
 

Stable Islands of Dimensionality 
By Dr. rer. nat. habil. Norbert Schwarzer 

Abstract 
In previous papers we have shown that the varia�on of a system with respect to its dimensionality 
does not only give us thermodynamics [A1 – A5], and via the Bekenstein-Hawking thought 
experiment [A6 – A8] a dimensional understanding of the inner structure of black holes [A1 – A5, A9], 
but even helps us solving the problem of the origin of the fine structure constant [A10] and provides 
a metric understanding of the Pauli exclusion principle [A11, A12]. 

Here now we want to inves�gate the possibility for varia�onal and non-varia�onal condi�ons for the 
existence of stable islands of dimensionality in which certain systems can or want to exist in. 
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Mo�vator I: Varia�on With Respect to Dimensionality? 
How Some Dimensions Need Space 
Mo�vated by our desire to fundamentally derive rather basic concepts like, for instance, the Pauli 
exclusion [1] or the growth of black holes, it was shown in [2] that for spaces of n-spherical symmetry 
the radius increase with increasing dimension follows the bit-wise growth of a black hole when 
always demanding the radius for the n-sphere to couple at its extremal dimensional condi�on. This 
means that the number of dimensions for the very n-sphere is chosen such that either surface or 
volume are extremal. The corresponding radius shows the Bekenstein-Hawking behavior [3, 4]: 

 ( )( )fr 2 L n n 1 nπ= ⋅ ⋅ ⋅ + ⋅ + . (1) 

Here n gives the dimension, while L is just a scaling factor. 

While the classical evalua�on is given in the appendix of this paper, we here want to point out a small 
flaw or inconsistency within the classical deriva�on and intent to correct it. The basic assump�on in 
Bekenstein’s experiment is the construc�on of a bit-like informa�on, thrown into a black hole by 
choosing the size of a photon (its wavelength) equal to the Schwarzschild radius. Repea�ng the 
evalua�on with an uncertainty to this assump�on leads to quite some consequences and will later 
become important within this paper. Thereby the deriva�on of this refined equa�on is performed as 
follows:  

At first, following Bekenstein with a slight adjustment, we start with the assump�on that the photon’s 
right size should be a wavelength λ of the Schwarzschild radius rs �mes an yet unknown parameter µ. 
Knowing that the energy of the photon would be E=h*ν, with ν deno�ng the frequency and h giving 
the Planck constant, and plugging in the equa�on for the Schwarzschild radius of the photon related 
mass change ∆m (with reduced Planck constant   and the Newton constant G): 
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we can derive the surface change of the black hole ∆A as follows: 
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Now we assume that we construct a whole black hole just bit by bit and that the later in the end 
consists of q bits leading to the iden�ty: 
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Solving with respect to the Schwarzschild radius measured in units of the Planck length, results in: 
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n-Extremal Objects/Systems 

The n-Extremal Sphere 
We now consider n-spheres with n deno�ng the number of dimensions of the sphere and an n-
dependent radius and start with the volume func�on for these objects, reading: 
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Deriva�on with respect to n leads to: 
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Demanding the volume to be extremal, we now obtain the following differen�al equa�on of first 
order in the dimensions n for the radius r[n]: 
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resul�ng in the following solu�on for the radius r[n]: 
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Se�ng the constant Cn zero, we note that for n=0 the radius is not zero, but: 
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Surprisingly, leaving the constant finite (and posi�ve), we would even obtain r[0]=∞. 

The n-p-Extremal Ellipsoid 
Now we generalize our sphere to an n-p-spheroid with p axes being different from r, leading to the 
following volume formula: 
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The difference of the two sorts of axes is defined by a factor β. The result for the deriva�ve with 
respect to the number of dimensions n reads: 
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and gives the following solu�on for the radius factor β[n]:  
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Other Geometries 
We realize that our n-extremal objects are the results of geometry dependent solu�ons of the 
volume integral: 
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being variated with respect to its dimensionality. We have already discussed this in a variety of 
previous publica�ons. For convenience we are going to repeat the essen�al in the appendix of this 
paper. In this sub-sec�on we are only interested in a generaliza�on of the cases we have considered 
so far. 

The simplest generaliza�on of (15) (or (87) in the appendix) can be given for an ensemble of N tori of 
dimensions nj for the sub-nj-spheres of the individual torus. The volume integral would then yield: 
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This could be further generalized for a sum of tori and leaves us with a great variety of pure volume 
(radii) and dimension varia�ons. 

As tori can be seen as combined nij-spheres with nij giving the dimension of the sub-spheres 
construc�ng, each torus (15) can be generalized as follows when assuming N tori with dimensions ni 
and sub-spheres of dimensions nij: 
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Assuming that also complex symmetries of systems could be constructed out of sums of tori, we 
realize that the varia�onal op�ons are manifold: 
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and leave us with a great variety of op�ons for an op�mum sized system in the case of complex 
symmetries. 

We see that even a fairly simple case of n-tori allows for rather complex sets of dimensional extrema. 

The Rela�on Between the Bekenstein- and the n-Sphere Picture 
Now, we divide equa�on (5) by (9) and square the quo�ent, resul�ng in: 
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In the limi�ng case q∞ we can give an accurate solu�on to the quo�ent above, reading: 
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In the figures (figures 1 and 2) below we illustrate the n-dependency of the ra�o for various constants 
Cn. We realize that – just as also demonstrated in the appendix - for bigger numbers of dimensionality 
n, with a suitable fit of the parameters µ and Cn we can always distribute the Bekenstein-Hawking 
finding (5) by an approach of n-extremal spheres (9). 

We therefore conclude that dimensionality plays an important role in the fundamental laws of nature 
and that dimensionality also is somehow connected with the informa�on (number of bits) a system 
contains . From there we might also conclude that there are islands of stability in the dimensionality 
of systems. 

 

Fig. 1: Quo�ent (19) for Cn=0 and various posi�ve constants Cn. 



 

 

Fig. 2: Quo�ent (19) for Cn=0 and various nega�ve constants Cn. 

Meanwhile we were able to apply the n-varia�on to a great variety of cases [5 – 12], where we 
connected not only fundamental quantum equa�ons [13] and solu�ons to the Einstein-Field-
Equa�ons [14] to the dimensional varia�on, but also considered quite general ques�ons in other 
fields, like informa�c and the deriva�on of fundamental constants [2, 6, 7, 8, 15 – 21]. 

The Strange Connec�on to the Sommerfeld Constant α 
Naturally, we may also assume that the number of the fine structure constant just comes out of the 
quo�ent in the limit of (20), but instead of n moving towards infinity, we just have a certain 
dimensionality and need to solve the following equa�on: 
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Thereby we might assume non-black-hole objects and also consider the fact that one bit does not 
only need one dimensions to be coded but k dimensions. In this case (21) changes to: 
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Se�ng µ=1, we find that reasonable results can only be expected for k≤3 and the Cn chosen such 
that we always end up in posi�ve integer n. It should be noted that while Cn plays no role in the limit 
of n∞ we, of course, have this as an important parameter in all cases where n is finite. Depending 
on µ and Cn we than obtain certain n for given systems as “stable islands of dimensionality”. 

This aspect will be discussed in [20, 21]. 



 

Mo�vator II: The Classical Equa�ons Already Contained 
Dimensionality 
It needs to be pointed out that the varia�onal equa�on (15) does not directly relate to the classical 
approach [27]. Therefore, we intend to work out the connec�on in this sec�on. 

The famous German mathema�cian David Hilbert [27], even though applying his technique only to 
derive the Einstein field equa�ons for the General Theory of Rela�vity [28] in four dimensions, – in 
principle – extended the classical Hamilton principle to an arbitrary Riemann space-�me with a very 
general varia�on by not only – as Hamilton and others had done – concentra�ng on the evolu�on of 
the given problem or system in �me, but with respect to all its dimensions. His formula�on of the 
Hamilton extremal principle looked as follows: 

 ( )( )n
M

V

W 0 d x g R 2 Lδ = = δ − ⋅ − Λ +∫ . (23) 

There, we have the Ricci scalar of curvature R, the cosmological constant Λ, the Lagrange density of 
mater LM, and the determinant g of the metric tensor of the Riemann space-�me gαβ. For historical 
reasons, it should be men�oned that Hilbert’s original work [27] did not contain the cosmological 
constant, because it was added later by Einstein in order to obtain a sta�c universe, but this is not of 
any importance here. The evalua�on of the so-called Einstein-Hilbert ac�on (23) brought indeed 
Einstein’s General Theory of Rela�vity [28], but it did not produce the other great theory physicists 
have found, which is Quantum Theory. It was not before Schwarzer, about one hundred years a�er 
the publica�on of Hilbert’s paper [27], extended Hilbert’s approach by considering scaling factors to 
the metric tensor and showed that Quantum Theory already resides inside the sufficiently general 
General Theory of Rela�vity [2, 5, 6, 7, 8]. We will not discuss the reason why this simple idea has not 
been tried out by other scien�sts before, but we may s�ll express our amazement about the fact that 
a simple extension of the type: 

 [ ]G g F fαβ αβ= ⋅  (24) 

solves one of the greatest problems in science, namely the unifica�on of physics and that it took 
science more than 100 years to come up with the idea. Using the symbol G for the determinant of the 
scaled metric tensor Gαβ from (24) of the Riemann space-�me, we can rewrite the Einstein-Hilbert 
ac�on from (23) as follows: 
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Varia�on is also possible and s�ll converges to the classical form for F1. Here, which is to say in this 
paper, we will mainly consider examples with q=0, but for completeness and later inves�ga�on we 
shall men�on that a comprehensive considera�on of varia�onal integrals for the cases of general q 
are to be found in [8]. 

Performing the varia�on in (25) with respect to the metric Gαβ and remembering that the Ricci 
curvature of such a scaled metric contains certain deriva�ves of F (see some previous publica�ons, 
e.g., [6] appendix D), changes the whole varia�on to: 
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and results in: 
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when se�ng q=0 and assuming a vanishing cosmological constant. With a cosmological constant we 
have to write: 
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For beter recogni�on of the classical terms, we have reordered a bit and boxed the classical vacuum 
part of the Einstein field equa�ons (double lines) and the cosmological constant term (single line). 
Everything else can be – no, represents (!) – mater or quantum effects or both. 

Thus, we also – quite boldly – have set the mater density LM equal to zero, because we see that 
already our simple metric scaling brings in quite some op�ons for the construc�on of mater. We 
have seen in our previous work [2, 5, 6, 7, 8] that there is much more with the same technique (see 
especially [5]). We also discussed more general kernels for the Hilbert ac�on and explained why this 
does not necessarily lead to devia�ons from the gravita�onal laws we observe [5] even though the 
rigorous performance of the varia�on for such kernels would suggest such a devia�on [29]… on first 
glance. 

What we also realize is that we already find the varia�onal ingredients for the n-extremal systems, we 
have considered above. We simple take the classical equa�on (23) or its generalized form (25) (with 
q=0) and generalize the varia�on with respect to all aspects of the metric, which automa�cally also 
includes its dimensionality. We might want to write it like: 
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We see that the case with no curvature yields: 
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. (30) 

Assuming vanishing mater and a small metric varia�on results in: 
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We see that the volume integral, we have used above for our n-extremal objects only appears when 
we treat the remaining terms in (31) as constants, which is to say: 
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This means that when a�er the usual Hilbert metric varia�on a constant remains, we find ourselves in 
the posi�on to perform the n-extremal search just on an ordinary volume integral. Most interes�ngly, 
these condi�ons are fulfilled in the cases of black holes following the Schwarzschild metric [30] as we 
have considered them in here.  

Minimalizing the “Empty” Space-Time 
Assuming that any n-dimensional space-�me might be filled with geometric objects of a certain 
symmetry, one automa�cally has to ask the ques�on what happens in those cases where this 
symmetry does not allow for a complete filling of the space-�me. We just need to imagine spheres in 
boxes or stacks of cannon balls in order to see “the poten�al problem”. Knowing that cartesian 
coordinates always allow a complete filling, we can define the volume VR of the space being “le� out” 
by an ensemble of objects of a certain symmetry: 

 R C OV V V= − . (33) 

Here VC denotes the Cartesian volume and VO the volume occupied by the objects. 

Of course, one could now, as before, ask for an extremum for VR just being constructed our of 
extrema of its addends, but here, we want to inves�gate a non-varia�onal possibility by just 
demanding: 

 R C OV V V 0= − = . (34) 

Let us consider a space filled with n-spheres in such a way that each sphere occupies exactly a cube 
of that very n-space. Naturally, this is not the op�mum packing with the highest possible sphere 
density. Then (34) reads as follows: 
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Keen on making the rest-space to vanish, we find a solu�on only for n=1, because then we have: 
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but when assuming that there might be structures where, instead of the factor 2 for the n-cube’s 
volume with the cube-centered n-sphere: 

 [ ]( )n
CV 2 nr= ⋅ , (37) 

we could have something like: 

 [ ]( )n
CV nr= α ⋅ , (38) 

we’d obtain a whole set of solu�ons for various n in dependence on the factor α. The figure (fig. 3) 
below illustrates the corresponding distribu�on. 

 

Fig. 3: The factor 𝛂𝛂 in dependence on the dimension n. 

Of course, we might also just want to be the rest-space to be extremal, which requires us to solve the 
following equa�on: 
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. (39) 

Unfortunately, we are unable to find a solu�on here and thus, leave the further considera�on of this 
op�on to the interested reader. 



 

Thermodynamics of Dimensionality 
In a variety of previous publica�ons we have shown that the varia�on with respect to the number of 
degrees of freedom gives thermodynamics. As this is a prety comprehensive topic, the interested 
reader is referred to our original work [22 - 26]. 

Collapse of the Wavefunc�on-“Collapse” 
Even though it is not really a topic of this paper, the dimensionality of a system also has an impact on 
how we observe things. As an observa�on of anything requires the observer to somehow entangle 
with the object of his observa�on, the number of dimensions of the previously separated systems 
observer and object has to be combined or even changes when being forced together during the 
observa�on (measurement). 

We are not going to completely inves�gate this problem in here, but briefly show on the example of 
the hydrogen atom what “observa�on” metrically means. 

A 7-dimensional Schrödinger Hydrogen Atom 
Taking the metric of a space�me with dimensions t, r, ϑ, φ, φ1, φ2 and φ3 of the following form: 
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assuming “weak gravity” according to: 
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, (41) 
and feeding everything into the Quantum Einstein-Field-Equa�ons [2, 5, 6, 7, 8]: 
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being contracted with the contravariant metric tensor in accordance with the condi�on (41), directly 
leads us to the following scalar quantum gravity equa�on for the func�on ( )Schrödingerf r, ,ϑ ϕ : 
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In order to obtain the usual nega�ve 1/r-dependency plus the posi�ve energy in (43) [31, 32] and s�ll 
having a stable oscilla�on instead of hyperbolic behavior for the two func�ons: 
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however, we see that we have to make the last coordinate �me-like and the �me coordinate space-
like, which is to say (see red squares): 
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This allows us for real posi�ve parameters Qn and 
3

Cϕ and would give us the following par�al 

differen�al equa�on: 
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With  , µ, q and ε0 deno�ng the reduced Planck constant, the reduced mass (with mass of proton mp 
and electron me), the unit charge and the permi�vity constant in vacuum, the well-known 
corresponding solu�on can be given as follows [31 - 34]: 
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The constant a0 is deno�ng the Bohr radius with: 
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The func�ons P, L and Y denote the associated Legendre func�on, the Laguerre polynomials and the 
spherical harmonics, respec�vely.  

Regarding the classical discussion of the solu�on, especially the quan�za�on via the quantum 
numbers n, l and m, we have to refer to the text book literature (e.g. [31, 32]).  

Here we are only interested in the influence of the poten�al- and energy-related other dimensions t, 
φ1, φ2 and φ3 on the character of the solu�on (bonded or non-bonded states). 

As we require nega�ve En for the bonded states, we see that changing the approach (40) to pure 
oscilla�ons in �me as follows: 
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does give us exactly what we need. A hyperbolic approach in �me: 
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on the other hand, gives us con�nuous (non-bonded) solu�ons. 

We see that we are able to construct the metric situa�on for the Schrödinger Hydrogen problem in 
a 7-dimensional space-�me.  

Along the way, however, in order to obtain the right signs with respect to the classical Schrödinger 
equa�on, we had to change the classical �me-coordinate to space-like and the coordinate making up 
our 1/r-poten�al (which here was 3ϕ ) to �me-like. If we wanted to avoid such changes, we might 

s�ck to the metric (40) and consider non-oscilla�ng hyperbolic solu�ons for t and 3ϕ  as follows: 
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In order to obtain stable 1/r-poten�als and energies, of course, we have then to assume system 
coordinates t and 3ϕ , which are „fixed” around certain values keeping the boundary condi�ons and 

thus, maintaining the structure of equa�on (46). In other words, the t in metric (40) is not to be 
mixed up with the general omnipresent �me we experience in our daily life, but would only be a kind 
of system �me, which would be frozen at a certain value in order not to produce singulari�es for 
infinitely growing t. The same has to hold for the poten�al coordinate 3ϕ . The system appears sta�c, 

which is to say, it takes on certain states, meaning it jumps to certain parameters and then just stays 
there. It would also be possible to assume “moving coordinates t and 3ϕ “ and just live with the fact 

that there are internally growing hyperbolic dependencies for the func�ons ft and f 3ϕ  which simply 

do not show up during the observa�on of the system, because, either such changes are too small to 
be seen, or the system permanently resets itself. We admit, however, that the adjustment of �me- 
and space-like plus the choice of oscilla�ng solu�ons appears a bit more atrac�ve. 

An 8-dimensional Schrödinger Hydrogen Atom 
Let us assume a dimensionally small system of only 8 degrees of freedom of the following kind: 
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 (52) 

we can get the same par�al differen�al equa�on as given above. Our next step is to apply a 
separa�on approach and to par�ally “fix” some of the func�ons as follows (for i=3, 4, 51): 
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, (53) 

 
[ ] [ ] [ ]t t1 t2f t C cos c E t C sin c E t= ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ , (54) 

 [ ] [ ] [ ]1 1
L0 P 0 LQ

A
0

Af C P cos C Q cosϑ ϑ ϑ   ϑ = ϕ = ⋅ ϑ = ϕ + ⋅ ϑ = ϕ    , (55) 

with the associated Legendre polynomials 1 1A A
L L,QP . This gives us the following differen�al equa�on 

for the r-dependency of f[…]: 

 
1 If not used as index “i” stands for the imaginary number 1i = − . 
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We see that for the choice of s=1 and [ ]
i if constϕ ϕ =  for i=2,3,4, we obtain: 
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, (57) 

which is just the classical Schrödinger hydrogen problem with the corresponding solu�on: 
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Bringing in the Observer 
No mater which of the metric constella�ons for the construc�on of the hydrogen atom we might 
have used, when we want to find out in what of the possible states the atom is in, we are forced to 
connect (entangle) our own – huge and many-dimensional – metric (which is or mathema�cally 
represents us) with the hydrogen system, thereby forming one big combined space-�me. Obviously, 
the combined metric is not equal to the original hydrogen metrics ((40), (45) or (52)) even though, it 
might s�ll contain it in an almost undisturbed but entangled manner. The entanglement with the 
observer makes all the difference. Taking the example of (52) we now have: 
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 
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 
, (59) 

with the new wave func�on Ψ ac�ng as the connector between the observer and the observed. 

Of course, Ψ is not F and in the usual macroscopic reality probably has not much to do with the 
hydrogen atom apart from the fact that it somehow mirrors the connec�on to the observer during 
the measurement process. So, if the observer is interested in the informa�on within F, he somehow 
has to make sure that everything else does not become too dominant. S�ll, he will never be able to 
truly just measure F completely on its own, because no mater, how clever the metric setup (59) 
might look like, the Ψ, the observer observes, will never only contain just informa�on related to F and 
the metric (52) but always also a bit of the “rest”, which means the observer and his macroscopic 
reality. The observer may get close to a “pure” measurement of F by trying to restrict the 
dependencies of Ψ to the coordinates of (52). The quantum gravita�onal metric to be run through 
the varia�on process does then read: 
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. (60) 

From the Quantum Einstein Field Equa�ons (42) we now obtain the same quantum equa�ons as 
above when assuming the “weak gravity” condi�on (41), which is to say: 
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, (61) 

and when further se�ng: 

 
4

n 2[ ] −Ψ ψ = ψ , (62) 

together with the separa�on approach from above, we can linearize (61), ending up in the classical 
Schrödinger hydrogen equa�on (46). It should be noted that with n being quite huge, the func�on Ψ 
would be always close to one, but this does not change the fact that (62) makes (61) to: 
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where in the second line we have used the fact that: 

 [ ]1 2 3 4 5t, r, , , , , ,ψ = ψ ϑ ϕ ϕ ϕ ϕ ϕ . (64) 

Further assuming the flat space as Schrödinger did and consequently se�ng R=0 plus applying the 
separa�on approach: 
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with the par�al solu�ons: 
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 [ ] [ ] [ ]t t1 t2t C cos c E t C sin c E tψ = ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ , (67) 
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gives us the following differen�al equa�on for the r-dependency of ψ[…]: 
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we see that for the choice of s=1 and [ ]
i i constϕψ ϕ =  for i=2,3,4, we obtain: 
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just being the radial part of the classical Schrödinger equa�on for the hydrogen atom. 

The delicate part is the lineariza�on condi�on (62), because there, for huge numbers of n, the scaling 
func�on Ψ  would always almost be 1. This means that the entanglement of observer and object 
(here the H-atom) either renders the resul�ng quantum effect miniscule or leaves in a small non-
linearity which does not allow for any superposi�on of solu�ons (states). In this case the system has 
“to make a decision” and chose a state. A simple instability to the dimensionality in the lineariza�on 
condi�on (62), poten�ally caused by a permanent switch of dimensions or a – as one might want to 
call it – “dimensional uncertainty”, would completely suffice to end up in such a non-addi�ve 
environment. The reason for this unstable behavior may just be that the macroscopic reality of the 
observer system – being so huge and omnipresently entangled and disentangled with many objects - 
comes with a permanent change also in its total dimensionality. The observer-object-entanglement 
then forces this dimensional uncertainty also onto the object being measured. 

As said at the beginning of this sec�on, the goal was not to finalize this discussion, but only to point 
out the connec�on of the dimensional choice with the measurement process and hence, the 
ominous “collapse of the wave func�on”. 

Extremal Dimensionality for Schrödinger 
When now, a�er almost having lost ourselves in the “collapse of the wave func�on”, coming back to 
the ques�on of dimensionality of systems, we realize that our n-extremal condi�on, resul�ng from a 
variated volume equa�on poten�ally from (32), even a simple quantum problem like the Schrödinger 
hydrogen results in a rather complicated integral, because we have: 
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Using (52) again, we would have to set n=8, but in principle only a�er the varia�on, meaning 
rigorously demanding n-extremality, we would have to leave the dimensionality open and work 
ourselves through the calcula�ons above with a set of suitable metrics of unknown dimensionality 
but the characteris�c structure bringing about the hydrogen atom Schrödinger equa�on. In principle 
this could be done with our observer-object metric (60) where, for the reason of simplicity, we may 
assume a rather primi�ve observer consis�ng only of Cartesian components leading us to: 
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Knowing that the minus sign under the square root in front of the determinant of the covariant 
metric tensor in principle stands for: 
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gives us from (72): 
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This part: 

 n *

V

d x g |⋅ψ ⋅ψ = ψ ψ∫ , (75) 

however, is just the quantum mechanical scalar product of the wave func�on ψ with itself, which, on 
the right hand side of the equa�on, we presented in Dirac’s bra-ket nota�on. 

Our varia�onal result (74) would then demand the dimensional dependency of this scalar product to 
be an extremum with respect to the number of dimensions the system lives in. 

Conclusions 
We found a variety of extremal condi�ons for various symmetries and objects regarding their 
dimensionality n. This n-extremality seems to have connec�ons to many aspects in physics. We found 
a dimensionality rule for the bit-wise growth of black holes in accordance with the Bekenstein-
Hawking thought experiment, a limi�ng equa�on for the evalua�on of the Sommerfeld fine structure 
constant and a system-size dependency involving the quantum mechanical scalar product for 
observer-observables-systems. We also saw the aspect of dimensionality of systems in connec�on 
with the so-called collapse of the wave-func�on and tried to explain the process by the means of the 
entanglement of the observer with the object of interest (being observed). 

Appendix: About the Dimensional Size of Systems 
In classical systems science there is no way to derive the necessary dimension of a system in a truly 
fundamental and neutral (mathema�cally based) manner. Thus, systems are o�en “defined” as it 
pleases the creator of the simula�on or as there are restric�ons in ability and calcula�on power for 
the “digital twin” of the natural system one intends to model. As this holds for any system, this is also 
true – of course – for the unconscious or conscious mind and thus, of great interest here. 

We start with the conjecture that not just the system’s inner proper�es and corresponding governing 
equa�ons but also the system’s size (number of degrees of freedom or dimensions) can be derived 
from a suitable minimum principle. Our star�ng point shall this �me be the Einstein-Hilbert ac�on 
with a generalized Lagrange density func�on [ ]R RΦ  and a yet undefined varia�on, which we write 

as follows: 

 [ ]( )n
? ? R

V

W 0 d x g Rδ = = δ − ⋅Φ∫ . (76) 

Please note that we could also write this for a scaled metric tensor as elaborated in the previous 
appendices in order to work out the connec�on to quantum theory, respec�vely, in order to make it 



 

show itself directly via a set of wrapping and wave func�ons Fi[fi] and fi within the usual varia�onal 
calculus. 

In order to adjust undefined parameters and finalize the character of the varia�onal task (77), we 
intend to consider a fundamental problem and here determine the size of a black hole in a 
completely new way. Classically the size of a black hole is given by the Schwarzschild radius, which 

itself is determined by the mass m of the black hole via: 2

2
s

m Gr
c
⋅ ⋅

=  (G… Newton’s constant, c… 

speed of light in vacuum). This Schwarzschild radius, however, was never derived from a first 
principle, but was adjusted as a parameter to the Schwarzschild metric [14] in order to give the 
correct limit to the Newton gravita�onal law. 

Here now we want to derive the Schwarzschild radius via a suitable version of (77). In order to do so, 
we first need to repeat Bekenstein’s thought experiment of black holes. 

The Bekenstein Bit-Problem 
One of the most famous and equally puzzling problems in General Theory of Rela�vity is the 
Bekenstein-Bit problem, where it was found that black holes can store informa�on, but so far it is 
been seen as a mystery how these objects actually do this. In [2, 7, 8] we have shown that bit-like 
informa�on is been stored as dimensions and that each bit becomes one dimension. For convenience 
we are here repea�ng parts of the original evalua�on. 

In the early seven�es J. Bekenstein [3, 4] inves�gated the connec�on between black hole surface area 
and informa�on. Thereby he simply considered the surfaces change of a black hole which would be 
hit by a photon just of the same size as the black hole. His idea was that with such a geometric 
constella�on the outcome of the experiment would just consist of the informa�on whether the 
photon fell into the black hole or whether it did not. Thus, it would be a 1-bit informa�on. His 
calcula�ons led him to the funny propor�onality of area and informa�on. He found that the number 
of bits, coded by a certain black hole, is propor�onal to the surface area of this very black hole if 

measured in Planck area 2
P . In fact, the dependency how one bit of informa�on changes the area of 

the black hole (∆A) reads: 
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. (77) 

Thereby the deriva�on of this equa�on is performed as follows. At first we start with the assump�on 
that the photon’s right size should be a wavelength λ of the Schwarzschild radius rs. Knowing that the 
energy of the photon would be E=h*ν, with deno�ng ν the frequency and h giving the Planck 
constant, and plugging in the equa�on for Schwarzschild radius of the photon related mass change 
∆m (with reduced Planck constant   and the Newton constant G): 
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, (78) 

we can derive ∆A as follows: 
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Ignoring the extremely small second term in the last line, one could just assume our black hole to be 
constructed of many such bit surface pieces. Thus, we could write: 

 2 2 2 2 2
P s s Pq A q 32 4 r r q 8⋅ ∆ = ⋅ ⋅ π ⋅ = ⋅ π ⋅ ⇒ = ⋅ ⋅ π ⋅ 

, (80) 

where rs gives the radius of the black hole. We see that our black hole radius is propor�onal to the 
square root of the bits q thrown into it. 

Now we want to compare the dependency rs[q] with the radii rmax[N] resul�ng in maximum volume of 
n-spheres for a certain number of space-�me dimensions N=n+1. 

 

 

 

Fig. A1: Radius rmax for which at a certain number of dimensions the n-sphere has maximum volume 
in dependency on N=n+1 compared with the increase of the Schwarzschild radius rs of a black hole 
in dependence on the number of bits q thrown into it. We find that q=N=n+1. As examples we pick 
the situa�on with a radius slightly bigger than 1.5 (whatever unit). We obtain maximum volume for 
a sphere in 15 dimensions (orange doted line). Picking a radius slightly below 1, however, gives us 

a 6-dimensional sphere which can have maximum volume at such a size (green doted line). 

 

We find a perfect fit (s. figure A1) to the rmax[N]-dependency for q=N with the following func�on: 

 ( ) 2 2
s P0.014948 0.395r U q ; U 81244= ⋅ = ⋅ π ⋅+ ⋅ 

, (81) 

where U denotes a unit-factor which was set U=1 in figure A1. 



 

Our finding does not only connect the intrinsic dimension of a black hole with its mass respec�vely its 
surface, but also, at least par�ally, gives an explana�on to the hitherto unsolved problem of “what 
are the micro states of a black hole giving it temperature and allowing it to store informa�on”. 
According to the evalua�on in this sec�on, these microstates are just various states of dimensions 
realized within the black hole in dependence on the number of bits it contains (and thus, its mass). 
The bigger the number of bits, the higher the intrinsic dimensions the black hole has. In fact, the 
connec�on even is a direct one and only seems to deviate from the simple direct propor�onality for 
very low numbers of masses2, respec�vely Schwarzschild radii rs, respec�vely numbers of bits q the 
black hole has swallowed. 

This finding also gives us a direct connec�on between a principle mathema�cal law (the maximum 
volume as func�on of the dimension for a given radius of an n-sphere) to the number of bits a black 
hole contains, to the mass or Schwarzschild radius of this very black hole and the number and 
character of microstates the black hole actually uses to internally code the bits. 

It has to be pointed out that the expression “intrinsic dimension” truly stands for the part of space for 
r<rs, which is to say, the space behind the event horizon. As for the outside, the solu�on of a 
Schwarzschild object in n+1-dimensional space-�mes is given via: 
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. (82) 

As we find that the Newton laws of gravity, however, require N=4, it has to be assumed that in a 
region near the event horizon the dimension of the black hole decreases to the known 4 dimensions 
so that Newton’s laws of gravity are properly mirrored to us (as outside observers). The 
corresponding deriva�on was given in [8] (chapter 11). 

A System-Immanent Scale 
Note: the correct solution for the evaluation of the Schwarzschild radius rs as function of the bits 
thrown into a black hole object (if using the results from [15]) would be:  

 ( )( )s Pr 2 1= ⋅ ⋅ ⋅ + ⋅ + π q q q ! (83) 

We find a perfect fit to the n-spheres with maximized volume to a given radius (dots in figure A1) with 
a Planck length of P 0.07881256452824544= (s. figure A2, which is almost perfectly equal to the 

fit in figure A1).  

 
2 Besides, this deviation is also suggested by the Bekenstein finding summed up in equation (54), where we 
could assume the second term to become of importance at lower numbers of rs. 



 

 

Fig. A2 (Please note that we have applied a slightly different fit than it was applied in fig. A1): 
Radius rmax for which at a certain number of dimensions the n-sphere has maximum volume in 

dependence on N=n+1 compared with the increase of the Schwarzschild radius rs of a black hole in 
dependence on the number of bits q thrown into it by using (84). We find that q=N=n+1. 

 

But what would be the unit for this Planck length?  

Well, it was already shown in [8] that by using the results from [15] and the “volume integral” (77)
with: 

 n
n n

V

W 0 d x gδ = = δ −∫ , (84) 

for n-spheres (in [15] with T[n]=1): 
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we have evaluated the very dimension n to which at a given radius rs the volume of a n-sphere has a 
maximum. The rs are put into the calcula�on as plain “natural” numbers, meaning an rs=1 is just a 1 
and that is it. We might name this unit a “mathema�cal meter” or just “mams” (plural for 
“mathema�cal meters”). Transforma�on to our usual units, like meters, requires the introduc�on of a 
factor T[n]=Un.  

With 
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, for instance, we can easily change to our 

meters. Nevertheless it appears somehow astonishing that there seems to exist a fundamental 
“natural” unit, being completely based on a mathema�cal -  geometrical - extremal principle (the 



 

maximum volume of n-spheres as func�ons of their dimensions for certain radii). It is also interes�ng 
that these dimensions are so nicely correlated to the number of bits a black hole has swallowed. In 
fact, using the unit of mams, the number of spa�al (n-sphere) dimensions is perfectly equal to the 
number of swallowed bits. 

Thus, in the case that black holes would in fact store their content as dimensions and the Einstein-
Hilbert-Ac�on being extended with respect to the number of dimensions in addi�on to the metric, 
we immediately also get an absolute scale for our black hole system in which the number 1 is “made 
out” of 12.6883 Planck length and where a 3-sphere has a radius of 0.6969979737167096 mams. 

Back to the Op�mum Size Ques�on for any System 
When observing the integral in (77), we see that – in principle – we seek for a maximum volume for a 
given dimension or, taking the radius of a Schwarzschild object, look for the corresponding dimension 
making the volume integral an extremum. As the determinant g of the Schwarzschild metric is just 
equal to the one of a n-sphere with the addi�onal �me-dimension to be integrated, we can easily use 
the volume integral result of n-spheres, which reads: 
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Please note that due to the �me-coordinate t we have Vn+1 instead of Vn. Thereby the integra�on via t 
in (87) is assumed to be performed such that it would give 1. In general, we might take care about 
this part of the integra�on via a propor�onal constant T we could even consider to be n-dependent 
T[n] and thus, equa�on (86): 
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Now we evaluate the various dimensions for which, for a given radius r of the n-sphere, we would 
obtain extrema. The results were already given in figures A1 and A2. There we have illustrated the 
resul�ng rmax as func�ons of the dimensions N=n+1 (note: n=n-sphere dimension, N=t+n-sphere 
dimension). 

Now we just compare our findings with the original ques�on of extrac�ng a minimum principle for 
the dimensional size of a given system with our generalized star�ng point for the varia�onal task (77) 
and conclude that: 
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Thus, the determina�on of the op�mum size of a system we intend to consider, inves�gate or analyze 
can just be found by a dimensional varia�on of the volume integral of that very system. In the case of 
spherical symmetries, this then leads to equa�ons of the form: 
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Along the way we also can extract suitable fundamental scales for our system. 

The First Bit Requires the Highest Mass = The First Thought is the Most Difficult 
From (84) we can now extract the minimum Schwarzschild radius for the storage of one bit, which 
would be equal to 5.508 Planck length and corresponds to 11.16 �mes the Planck mass. This is a huge 
amount of mass and thus, also energy, one needs to safely store just one single bit. Luckily, the 
situa�on improves the more bits one intends to store, as for instance the one millionth bit only 
requires about 5.5*10-3 Planck masses. Please note that, of course, one might also store bits within 
spin arrangements of electrons. Then a 1-bit informa�on would be connected with a single electron, 
whose mass and spin energy is many magnitudes below the Planck mass. This spin storage, however, 
cannot be seen as a storage of a classical binary bit, because in fact it resembles a quantum bit. 
Apparently, the safe storage of a pure and truly binary informa�on requires an - almost - macroscopic 
massive structure. Here the black hole probably provides the smallest possible mass ensemble there 
can be to arrange such a storage for a certain bit. The limit is given at about 11 �mes the Planck mass. 
Only from this mass onward black holes can store binary informa�on… at least un�l the Hawking 
radia�on leads to a destruc�on of our black hole 1-bit storage system.  

And what would then happen to the stored informa�on? Well, this brings us to the ques�on how safe 
is informa�on within our universe [16]. 

Byproducts: A few Fundamental Ques�ons 
About the Relativity of System-Scales 
We saw that – similar to the Bekenstein or Bekenstein-Hawking problem (see reference [17]) – we 
add bits via dimensions to our metric structure (here a black hole). Assuming our metric system to be 
a black hole (which we here only use to have a simple as possible math), we can even obtain a ra�o of 
the black hole’s radius rs to the smallest structure this black hole can resolve. Taking the result for P - 

the Planck length - from the Bekenstein thought experiment, we find the ra�o between the 
Schwarzschild radius rs of a black hole and P : 

 ( )( )s

P

r 2 1= ⋅ ⋅ + ⋅ +


π q q q . (90) 

In our universe the Planck length P  is considered to be the smallest length possible to resolve. What 

if the ra�o (91), we found for black holes, actually is a more fundamental law? At any rate, it appears 
logic to assume that more bits could be coded or stored by an object of bigger size and smaller 
internal structure, thereby leaving more op�ons to describe something with these structures. Thus, 
the equa�on (91) makes intui�ve sense, but could it also be just the other way round? Could it be 
that to an object of given size the number of bits (being equivalent to its dimensions as we see in 
figures A1, A2) it contains, determines the smallest scale – the Planck length – of the object, too? 
And, if referring to the “Mathema�cal Psychology”, the system presents a thinking en�ty, does this 
also mean that thoughts have a physical scale? 

From inside and taking the Planck length as measure, the increase of informa�on to this very object, 
subject or en�ty would look like an increase of its size. Now assuming the inside of the black hole to 



 

be a general system, the inhabitants of this system may see this system as their very own universe 
and would register the increase of informa�on as a growth of their “universe”, measured in the 
Planck length of that very system-universe. When learning, we seem to feel the increase of mind. 
May be this percep�on is just what is actually really going on. 

 

Does More Information Always Mean More Mass? 
Quantum computer scien�sts have already pointed out that, with our current way of storing 
informa�on, we will one day reach a limit with respect to the number of atoms we can apply for the 
storing process and the energy being needed to keep the informa�on stable (maintained). Ci�ng from 
the abstract of [18], we have the following situa�on: 

“Currently, we produce ∼1021 digital bits of information annually on Earth. Assuming a 20% annual 
growth rate, we estimate that after ∼350 years from now, the number of bits produced will exceed 
the number of all atoms on Earth, ∼1050. After ∼300 years, the power required to sustain this digital 
production will exceed 18.5 × 1015 W, i.e., the total planetary power consumption today, and after 
∼500 years from now, the digital content will account for more than half Earth’s mass, according to 
the mass-energy–information equivalence principle. Besides the existing global challenges such as 
climate, environment, population, food, health, energy, and security, our estimates point to another 
singular event for our planet, called information catastrophe.” 

It has to be pointed out that when looking for possible inner Schwarzschild solu�ons [19], we also 
found that there are solu�ons, where the mass decreases with the increase of the object size. It may 
well be that such strange states are not only realized in black holes, but could perhaps also help to 
overcome our future informa�on storage problem. 

Generalization to General Spheres? 

In the sub-sec�ons above we saw that, when taking the equa�on for the Laplace length P  from the 

Bekenstein thought experiment [3, 4]), we find the following ra�o between rs (Schwarzschild radius of 
a black hole) and P  (c.f. equa�on  (91)): 

 ( )( )s

P

r 2 1= ⋅ ⋅ + ⋅ +


π q q q . (91) 

Most interes�ngly, we also found that the solu�on to the extremal volume problem for a fixed radius 
rf for n-spheres results in the same dependency when varia�ng with respect to the number of 
dimensions of those n-spheres. We obtain (see dots in figures A1 and A2) excellent fits, when 
applying an approach like:  

 ( )( )fr L n n 1 nπ= ⋅ ⋅ + ⋅ + . (92) 

Thereby we have the characteris�c (system-dependent) length scale L. 

This automa�cally gives us a connec�on between the size-parameter rf of any system of spherical 
symmetry and its theore�cal capability to store informa�on. A perfect mathema�cal n-sphere 
thereby follows the rule (93) almost perfectly, while other systems may do so only from certain 
cri�cal sizes onwards, but, nevertheless, we think we can draw the conclusion that the informa�on 
storage capacity of given systems – if showing enough spherical symmetry – can be extracted from 
(93). Then the structural size-parameter rf determines the number of storable bits n in dependence 
on the system-immanent length parameter L. 



 

From this, one even may deduce that rf and L could be subs�tuted by other system characteris�cs. 
While in (93) their dimension is length, we should not exclude mass, �me, charges, energies and so 
on. 

Consequences from the Bekenstein Thought Experiment Regarding the  
Solu�ons to the Quantum-Einstein-Field-Equa�ons 
In [2, 8] we have shown that the classical n-dimensional Schwarzschild solu�on could be applied to 
construct internally structured n-dimensionally black holes, while outside we s�ll have the usual 4-
dimensional solu�on from [14] with the classical Schwarzschild metric. This, however, would not 
explain how the black hole can code any informa�on.  

With the help of the new metric solu�ons evaluated in [19], namely, to just give an example, in the 
three-dimensional case with coordinates t, r and an angle: 
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(please note that r has become an angle while t took over the posi�on of the radius), 

 
[ ]

( )

[ ]

2

i c t

f

2

4 2
1

2

2

c 0 0
g C f 0 0t

0 0 sin r

f et C
⋅

β

⋅
⋅

±

α

ρ

 −
 = ⋅ ⋅ ρ 
 ρ ⋅ 

= ⋅

 (94) 

(this represents a shell-like object) we want to solve also this problem. A generaliza�on of this type 
solu�on is been given in appendix N of [2]. Thereby, we found that the Schwarzschild singularity 
could be avoided (fig. A3). 

 

 

( ) :
1 F ' 1R R g n 1 f f g
2 F 2αβ αβ αβ αβ

 − ⋅ = − − ∆ ⋅ 
   



 

 
Fig. A3: “From the classical Schwarzschild solu�on to a Quantum Black Hole” [19] 

At first, however, we should note that also the n-dimensional Schwarzschild solu�ons from [8], 
sec�on 3.8 (c.f. solu�on (83) in here) would provide plenty of op�ons to code informa�on, because 
there are enough degrees of freedom regarding the thicknesses of the individual x-dimensional layers 
of the onion-like Schwarzschild object, which was proposed there (see also [19]). Similar assump�ons 
could be made for the Robertson-Walker approach introduced in [19], but apart from again 
men�oning the onion-layer structured ogre-mind from the movie Schreck, we will not further 
consider these possibili�es in here. 

In the case of photonic inner solu�ons as also suggested in [19] one might assume some kind of 
standing waves inside the black hole, but as we currently don’t have the math to realize such 
structures, we postpone the inves�ga�on of this possibility. 

Thus, we here concentrate on solu�ons (94), (95) as poten�al inner solu�ons to a black hole. As we 
see that the parameter ρ clearly is a length, we want to derive its proper�es. For the general case this 
was already done in appendix N. Nevertheless, we repeat it here for the se�ng (94) and (95).  From 
basic quantum theory we know that a par�cle at rest has the �me dependency: 

 [ ]
2m ci t
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± ⋅ ⋅
= ⋅ , (95) 

with m giving the rest mass of the par�cle and   deno�ng the reduced Planck constant. Comparing 
with the f[t]-func�on from the metric solu�on (95), we find: 
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Inser�ng the Schwarzschild radius 2
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Here P  denotes the Planck length. By inser�ng (91) into (98) we obtain: 
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Thus, while for a black hole the number of bits thrown into it leads to an almost perfectly square-
root-like increase of the Schwarzschild radius in accordance with equa�on (91), the ρ-parameter of 



 

the (95)-objects decreases with the number of bits. (95)-objects would have the same ρ-parameter, 
which we may see as a size, as a black hole only for Schwarzschild radii rs equal to the Planck length. 
In other words, for growing black holes with radii bigger than the Planck length the corresponding 
equally heavy (95)-objects would be significantly smaller than the black holes. 

So, we ask: Could the (95)-objects be used as building blocks for the black holes, residing inside it, 
which is to say behind the event horizon? 

Assuming that the black hole’s surface is made out of metric spherical objects of the type (95) and 
further assuming that each of these objects in the surface of the black hole, which is to say at r=rs 
(which also happens to be the event horizon), requires its own surface space of something like Cρ*ρ², 
we can directly evaluate the number of such (95)-objects, we from now on name ρ-spheres, are 
residing inside the event horizon with increasing numbers of bits thrown into the black hole. 
Assuming that the mass is always addi�ve, the total mass m of the black hole must then be 
distributed among the N ρ-spheres, which changes (98) to: 
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Also having to sa�sfy the following equa�on for the N ρ-spheres si�ng on the surface, we have to 
solve the following equa�on: 
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We realize, that such a structure could not be used to store any informa�on, because the number of 
ρ-spheres should have to increase with the number of bits and not decrease as it does. Things are 
improving the moment we allow a combina�on of ρ-spheres and (94)-objects (the later we shall call 
t-spheres) to make up our inner black hole. We propose the following (simplest of the many 
possibili�es) structure: 

A) In the center of the black hole sits a ρ-spheres of “radius-parameter” ρ given in (98) and thus, 
2
P

sr
ρ =



, which is to say, the bigger the Schwarzschild radius rs of the black hole, the smaller 

its core. In fact, for infinite masses the core would become a singularity. 
B) This single ρ-sphere core is surrounded by t-spheres (94) and the number of those t-spheres, 

which a black hole can bind, is propor�onal to the number of bits the black hole has 
swallowed.  

C) Taking the Bekenstein-condi�on, this demands an average size for the t-spheres, being bound 
by the black hole or the black hole’s surface, to be such that its projected surface would be 

equal to 2
P . In other words, we could assume the average radius of the t-spheres (the ones 

bound to the black hole) to be equal to /P π . 

With such a structure, it is very well possible that in fact black holes have no singularity and follow 
our scheme of inner-outer-solu�on, but one cannot detect any difference to the classical 



 

Schwarzschild solu�on from the outside, because the inner-parts are always hidden behind the event 
horizon. 

But does this help us to solve the Bekenstein informa�on problem? 

Yes, it does. 

We can imagine many t-sphere objects (of number N=q) si�ng on the surface of the black hole. As 
the generalized solu�on to (94) would read: 
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we see that each t-sphere could not only store informa�on via a certain sign within the exponent, but 
also via the free parameter B. 

The Size of the Electron? 
Applying (100) and assuming a ρ-sphere-structure for the electron, gives us: 

 

13 23
P

2 13
P

s

s

s

s

r

r

N
2 G 2 N r rG

N

c 1 1 c

1.93 10 mete
r N

−

−

⋅  = ⇒ = ⋅ = ⋅ρ
⋅ ⋅ ⋅ ⋅ρ ⋅

ρ
⋅

 
×

⇒ = =









. (102) 

Se�ng N=1 we would end up with a ρ-sphere of  131.93 10 meter−= ×ρ for the “pure” or “naked” 
electron. 
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