Solving the 1/137-Riddle?

By Dr. rer. nat. habil. Norbert Schwarzer

Abstract

In this paper we will derive the fine structure constant «a=1/137.035999177 [A1] from the Bekenstein-
Hawking thought experiment [A1 — A4], by applying an extremal principle with respect to the number
of dimensions [A5, A6].

We find that the fine structure or Sommerfeld constant, as it’s also been called, apparently is just a
connector between the current model of science, seeing reality of something inside a 4-dimensional
space-time and a multi-dimensional concept with also the dimensionality itself being subjected to a
general variational, extremal principle.

With this approach we are able to give the fine structure constant as a numerical construct, consisting
of natural mathematical constants in dependence on the number of dimensions needed for the
storage of one bit. Here is our result for black holes with one bit being coded by just one dimension:
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What is the Fine Structure Constant (Al generated text)?

“The fine-structure [or Sommerfeld] constant, denoted by a, is a fundamental dimensionless
physical constant that quantifies the strength of the electromagnetic interaction between
elementary charged particles. Its CODATA recommended value is a = 0.0072973525643(11),
corresponding to a reciprocal value of 1/a = 137.035999177(21). This constant is defined in terms of
the elementary charge (e), the speed of light (c), the reduced Planck constant (h), and the electric
constant (go) as a = e¥(4neohc). The value of a is determined experimentally, with high-precision
measurements relying on techniques such as electron anomalous magnetic moment measurements
and photon recoil in atom interferometry, which have achieved uncertainties at the level of parts per
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trillion. The fine-structure constant plays a crucial role in quantum electrodynamics (QED), where it
represents the coupling strength between electrons and photons, and its precise measurement
serves as a stringent test of the Standard Model of particle physics.”

For Entertainment and as Introduction: A Brief Story

A Nobel prize winner in chemistry, learning about my Quantum Gravity approach recently wrote me
the following lines:

,| do grant you that the advantage of the closed form is to be able to see analytical patterns and
relationships that might have been hidden before.”

Here is my answer
Dear Prof. X,

regarding your friendly and motivating text piece ,| do grant you that the advantage of the closed
form is to be able to see analytical patterns and relationships that might have been hidden before.”
(which doesn’t mean at all that the rest is unfriendly, of course), | have to admit that | already came
across some very interesting of such “analytical patterns and relationships”. Most are too complex to
find a short way to explain them (my usual problem without the math — my sincere apologies) but
here is one | find both, short and intriguing:

When investigating a very simple metric model about the dimensional size of black holes in
connection with the Bekenstein-Hawking thought experiment (throwing bits into black holes), a
certain number appears which — as a unitless number — has to be quite fundamental, universal and
independent on physical laws, because, as said, it is just a number.

In my purely metric or geometric model, based on the equations on the 1-pager [I1], the number is
1/(16*pi*e) (with e being Euler’s number) and not only is it quite persistent in its appearances, but it
also is — for my taste — a little bit too close to the so-called Sommerfeld fine structure constant
alpha=1/137.035999206 to be just a coincidence.

You know, of course, that the question about the origin of this constant is one of the most fascinating
riddles in science since Sommerfeld discovered it more than one hundred years ago.

Best wishes

Norbert

His answer: “Well yes, this is the way to attract attention to your comprehensive formalism.”

[11] N. Schwarzer, “Do We Have a Theory of Everything — One Pager”, 2025, a SIO science
paper, www.siomec.de, https://www.siomec.com/pub/2025/b17

The Bekenstein-Hawking Thought Experiment

How Some Dimensions Need Space

It was shown in [2] that for spaces of n-spherical symmetry the radius increase with increasing
dimension follows the bit-wise growth of a black hole when always demanding the radius for the n-
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sphere to couple at its extremal dimensional condition. This means that the number of dimensions
for the very n-sphere is chosen such that either surface or volume are extremal. The corresponding
radius shows the Bekenstein-Hawking behavior [3, 4, 5, 6]:

rf=2-L-\/7t-(n+,/n~(1+n)). 2)

Here n gives the dimension, while L is just a scaling factor.

While the classical evaluation is given in the appendix of this paper, we here want to point out a small
flaw or inconsistency within the classical derivation and intent to correct it. The basic assumption in
Bekenstein’s experiment is the construction of a bit-like information, thrown into a black hole by
choosing the size of a photon (its wavelength) equal to the Schwarzschild radius. Repeating the
evaluation with an uncertainty to this assumption leads to quite some consequences and will later
become important within this paper. Thereby the derivation of this refined equation is performed as
follows:

At first, following Bekenstein with a slight adjustment, we start with the assumption that the photon’s
right size should be a wavelength A of the Schwarzschild radius rs times an yet unknown parameter L.
Knowing that the energy of the photon would be E=h*v, with denoting v the frequency and h giving
the Planck constant, and plugging in the equation for the Schwarzschild radius of the photon related
mass change Am (with reduced Planck constant 7 and the Newton constant G):
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Now we assume that we construct a whole black hole just bit by bit and that the latter in the end
consists of q bits leading to the identity:

2 4
q-AA:4-n-r52:q-(32-n2-%+64-n3-f;2j. (5)

Solving with respect to the Schwarzschild radius measured in units of the Planck length, results in:
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Purely Geometric Evaluation - Keeping Things Simple

While equation (2) is derived from the Bekenstein thought experiment [3, 4] (see appendix) and
therefore lacks a rigorous purely mathematical explanation, we now want to extract its fundamental
content directly from a geometrical consideration. We start with the volume of the n-sphere:
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Here Hn[x] denotes the harmonic number of x and y gives the Euler Gamma constant with
approximately y=0.57722...

Demanding the volume to be extremal, we have to set:
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obtain the following solution for the radius r:
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Of course, our evaluation is slightly incorrect, because we did not assume an n-dependency for the
radius r when performing the evaluation in (8). This will be corrected later as it only complicates the
situation now and holds us up from moving fast forward in order to obtain a rough overview.

Please note that due to Hy[0]=0 for n=0 the radius for the zero-dimensional sphere does not vanish,
but is:
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Setting the result (10) into (7) gives us extremal n-sphere volumina as follows:
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The case of n=0 results in:

V= 1. (13)

]
Meaning, the dimensionless extremal n-sphere still has a finite volume and a radius.

In the case of general curved geometries we may assume to be able to describe them as generalized
n-tori of extremal sub-domains and end up with a volume equation as follows:
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We see that the volume then solely depends on the symmetry of the system and the number of
dimensions of the corresponding manifolds.
In the case of n-Ellipsoids the result would be a less distinct, because here the volume is given
through:
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V=——7-——=-]12;>
(n + 2) i1 !
r
2

With a; denoting the half-axes of the ellipsoid.

The Relation Between the Bekenstein- and the n-Sphere Picture

From the derivation of our equations (2) (see appendix) and (6) it becomes clear that they are purely
classical Schwarzschild geometric products. Hence, this theory plays its role in a 4-dimensional space-
time. The n-sphere derivation thereafter, however, is a multi- and variable dimensional approach.
That the two still deliver similar distributions regarding the dependency of radius and dimension for
the extremal n-spheres and Schwarzschild radius and bits for the classical black holes may have a
deeper meaning.

In trying to find the “connector” as a simple factor, we divide equation (6) by (10) and square the

quotient, resulting in:
r . 4-7[-(q+,/q-(l+q)) (16)
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To some it might say nothing that the result of this ratio for g=n and gq> o is 157.914/y, but this

author finds it a little bit too close to the reciprocal of the so-called Sommerfeld fine structure
constant with a=1/137.035999177.
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In the limiting case =0 we can even give an accurate solution to the quotient above, reading:
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Assuming, as Bekenstein and Hawking did, that p should not be too different from 1, we may wonder
whether the connection of the two worlds, the one of the extremal n-spheres, n-tori and so on and
the other with our 4-dimensions of space and time, has something to do with this strange
dimensionless constant a=1/137.0.... As a matter of fact, with p=1.1523517277636182 we obtain
exactly 1 over the fine structure constant a.

q=n—>

When trying to explain the meaning of a u different from 1 and thus, different from the Bekenstein
assumption, we could just assume that the photon should not have the size of the Schwarzschild



radius of the black hole, but should actually be bigger, as the bit-wise feeding of the black hole should
make it Schwarzschild sized when it reaches the black hole and not many diameters away. After all,
there is some blue shift to the photon to be expected when it travels towards the black hole. Usually,
this blue shift would be infinite from any position outside to the event horizon, but only when the
photon really need to travel until the very end, which is to say to the event horizon of the black hole.
What, however, when this is not of need? What when the blue shift only needs to be of such strength
that it makes to shrink the wavelength of the photon from p*r; down to rs? Assuming the observer to
be at infinity with respect to the black hole the redshift can be given via:

o - BT N S (18)

S :H:
A
a rs \/l_rs \/1_ rs
L, A-r,

We find that the parameter A would be A=4.04958, meaning that the absorption point r, would be
about 4 times the radius of the black hole outside the massive object. In this case, the equation (17)
could be rewritten as follows:
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Not aiming for the reproduction of fine structure constant but eliminating the nominator in (17) with
a blue shift produced u directly, which is to say, demanding:
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we’d obtain an absorption point very near the event horizon, with an A of A=1.0000401031 or
exactly:
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We wonder, having just found that extremal spheres have minimum radius even for the case n=0 (c.f.
equation (11)), whether there even is an event horizon and a true black hole or whether we rather

have to deal with extremal n-geometrical objects.

Brief Consideration of n-Tori

Instead of n-spheres we now want to investigate various n-tori structures in order check out the
effects of the additional degrees of freedom these objects might bring to the game. The motivation
for this generalization is extracted from physical problems coming with asymmetries [9 — 12] and/or
internal “geometries” like Dirac spinors [13].

As an example we consider an n-torus with two equally-dimensional manifolds but not necessary
equal radii:
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Setting n1=n,=n/2 and r,=B*r1= $*r leads us to the following equation for the radius r:
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Now, as in (19), taking (6) as dominator, dividing by our result r[n] from (24), we obtain:
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Now we simply assume that the bit-wise build-up does not refer to a black hole but an arbitrary
object with radius rf and that we can substitute the Planck length by a general scale L (see equation
(2)) in accordance with:

2 2 (1+¢ i
lim [—% ] = fim (r—fj ~ lim G )) 2P o)
q=n—>m r[n].gp L q=n—>wm ( yln ] u

p-e

and we see that we can have a rather flexible “connector” of information driven growth to various
geometries in @ multitude of n-tori realms. In the example here, we might just assume p=1 and 3

chosen such that it satisfies:
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which would connect the fine structure constant to an internally structured n-tori object with two
equally dimensional, but differently sized domains. Their asymmetry corresponds to the fine
structure constant.



Correction of the Evaluations With Respect to Variable
Radii and the Connection to a

In this section we now strictly avoid any incorrection with respect to the dimensional dependency of
parameters and repeat some important evaluations from above accordingly.

The n-Extremal Sphere

In contrast to our simplified evaluation (8), we now explicitly consider an n-dependent radius and
start with the volume function for an n-sphere, reading:

VzL-r[n]n. (28)

Derivation with respect to n leads to:
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Demanding the volume to be extremal, we now obtain the following differential equation of first
order in the dimensions n for the radius r[n]:
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resulting in the following solution for the radius r[n]:
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Thereby, this time, we even have obtained an arbitrary constant C,. Setting this constant zero, we
note again that for n=0 the radius is not zero, but exactly what we already have obtained above,
namely:
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Surprisingly, leaving the constant finite, we would even obtain r[0]=co.

The n-p-Extremal Ellipsoid

Now we generalize our sphere to an n-p-spheroid with p axes being different from r, leading to the
following volume formula:

I .Bp [n] (33)




The difference of the two sorts of axes is defined by a factor . The result for the derivate with
respect to the number of dimensions n reads:
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and gives the following solution for the radius factor 3[n]:
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Now Corrected: The Relation Between the Bekenstein- and the n-
Sphere Picture

Now, as before, we compare the purely classical Schwarzschild geometric result from the Bekenstein-
Hawking thought experiment (2), living in a 4-dimensional space-time and our n-sphere derivation as
a multi- and variable dimensional approach. Again we point out that the two still deliver similar
distributions regarding the dependency of radius and dimension for the extremal n-spheres and
Schwarzschild radius and bits for the classical black holes. This may have a deeper meaning.

Looking for the “connector” as a simple factor, we divide equation (6) by (31) and square the
quotient, resulting in:
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This time, the ratio for g=n and g2 is almost 137/u and we wonder why we are so close to the
reciprocal of the so-called Sommerfeld fine structure constant with a=1/137.035999177.

In the limiting case = o0 we can even give an accurate solution to the quotient above, reading:

: ]2 4 (g+a-(1+9)) 160

= lim = ‘€. (38)
q=n—>w® [Cuzln{r[l{ﬂ] u

M'e n n

As before, assuming, as Bekenstein and Hawking did, that pu should not be too different from 1, we
ask for a factorial connection of the two worlds, the one of the extremal n-spheres, n-tori and so on
and the other with smallest information units, bit, namely, in our 4-dimensions of space and time. We
find that 16*e*m=136.636 are already pretty close to those ominous 1/a=137.0... Thus, with a
p=(1-g)*mand an €=0.0029207771434275253 equation (38) would have delivered us exactly 1
over the Sommerfeld fine structure constant a.

With the p so close to m, there is a great motivation to see an entanglement of the two worlds and to
see it in form of Sommerfeld’s constant.



What Does it Actually Mean to “Catch a Photon”?

One option to explain the meaning of a pu different from 1 and thus, different from the Bekenstein
assumption, not connected to the red- or blue-shift of the infalling photons, as applied above,
thereby assuming that the observer is directly at the event horizon and thus, sees the photon’s
wavelength in the moment when it falls into the black hole, could just be associated with the
following geometric consideration:

0.5}

=== Event Horizon

X Photon

0.5 110

Fig. 1: Photon encircling a black hole. The wavelength of the photon is exactly the circumference of
the black hole and consequently does it partially leave it when doing its voyage.

Let us take just one photon and assume that there is nothing in the black hole that could absorb the
photon. Instead, the “poor thing” is just circling around the event horizon as shown in figure 1
(orange line). As the photon has a wavelength and an amplitude, we demand two conditions:

a) The wavelength should not be bigger that the circumference of the black hole so that the
photon can finish one cycle of oscillation when having circled the black hole once. This shall
be the new bit condition.

b) The photon should not be seen anywhere from the outside when doing its circling.

For illustration we show a set of photons not having the right size and thus, partially leaving the black
hole (coming out of the event horizon, c.f. figure 2).
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Fig. 2: 4 Photons with a wavelength equal to the circumference of the event horizon encircling a
black hole. It oscillations (after all the photons are waves) bring them partially outside the black
hole, which should not happen. In order to avoid this, the photons need to be slightly smaller.

“Rigorous” Derivation of Sommerfeld’s Constant — A:
The Sphere-Option
The photon with the right size, which we here simplify with an oscillation of type:

P(¢)=A-sin(9), (39)
would be one with a wavelength slightly smaller than the circumference of the black hole (figure 3).

In order to obtain the correct wavelength, we need to evaluate the length of the curved photon
which can be given via:
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Here the function E[x] denotes the elliptic integral of the second kind. Our definition of the length
guarantees that for A>0, which is associated with a completely flat wave or vanishing oscillation, we
obtain the result of A*m, which is just the circumference of the black hole, because a completely flat
photon does not anywhere stick out of the event horizon.

y

- Event Horizon
Photon out

X _ Photon in

Fig. 3: Two photons encircling a black hole. Now the wavelength of one photon (green) is a little bit
shorter than the circumference of the black hole so that it always stays inside when performing its
circles behind the event horizon. The other photon’s wavelength (orange) is exactly the
circumference of the black hole and consequently it does not always stay inside when doing its
voyage. We assume that this second option should be ruled out by a proper choice of p.

In any other (normal) case, we have to demand p to be:

pemem (41)
E[-A” |+V1+A E[HAZ}
which gives us the amplitude:
A =10.10836541304457664, (42)

and the final formula for the derivation of the fine structure constant as follows:
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Of course, this is not a rigorous, which is to say fully theoretical, derivation of the constant as it
required the empirical calculation of the photon’s amplitude, where, not having any information
about its natural value, we needed to plug in the fine structure constant to make everything fit. If,
however, we would be able to derive also the amplitude in a first principle, rigorous manner, our task
of obtaining Sommerfeld’s constant in a completely analytical way would be complete.

Maybe this will be possible by applying our solution to the photon [20, 21].

Extension to Cases of g#n

It needs to be pointed out that our “rigorous” derivation from above is restricted to the situation
where de facto one bit can be coded by one dimension. In non-Bekenstein cases, meaning where we
are not dealing with Black holes, we may need more dimensions to actually store one bit. Let us
assume we require k dimensions for this process. In this case the equation (43) changes as follows:
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Now, with the system potentially being more complex than a black hole, the photon can probably be
absorbed in a proper way and would not need to circle the object, which means that we do not need
the factor i in the denominator. Choosing k=3 as an example, we find p to be:

1 =1.0441389205244094 . (45)

“Rigorous” Derivation of Sommerfeld’s Constant — B:
The Spheroid-Option

Now we assume the photon-absorbing dimensionally extremal system to be not perfectly spherically
symmetric and apply our result for the n-p-extremal spheroid (36). Evaluation of the effective
(average) radius over the whole volume would be done via:
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whereby we distinguish the two options of the effective radius for all dimensions rn. and the
effective radius for just the B-dimensions rp.er. Choosing p=n-const it does not matter which one of
the effective radii we chose for our limiting procedure in comparison with the Bekenstein-Hawking
experiment, because in the limit for n=> 00 we obtain the same result, namely:
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This leads us to a simple p=m with the assumption of the circling photon (figures 1 and 2) but without
the need for any discussion about the width of a photon and the constant:

C, =%0.9985385435007366. (48)

Extension to Cases of g#n

As before considering the non-Bekenstein case, meaning where we may need more dimensions to
actually store one bit and assuming that we require k dimensions for this process the equations (47)
change as follows (again setting p=n-const which now changes to p=k*n-const):
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Here, too, we assume that the system, being more complex than a black hole, can absorb the photon
in a proper way and the poor thing would not need to circle the object, which means that we do not
need the factor 1 in the denominator. Hence, we have p=1. Choosing k=3 as an example again, we
find C, to be:

C, =%1.0218311604782904 . (50)

Conclusions

We have derive the fine structure constant a as connector between the current model of science,
seeing reality of something inside a 4-dimensional space-time and a multi-dimensional concept with
also the dimensionality itself being subjected to a general variational, extremal principle.

Thereby we applied the Bekenstein-Hawking thought experiment, where photons are swallowed by
black holes in a bit-wise manner, in two ways:

a) The classical picture, just as Bekenstein and Hawking did
b) As dimensionally extremal spheres or spheroids.

and derived «a as a ratio of the two descriptions of the same process.

With this we were able to give the fine structure constant as a number consisting of natural
mathematical constants in the following form:

1 16-7° 167
= . el .e

e 51
a =n-C C: Gl

In other, non-black-hole-like cases, where we can assume systems of higher complexity and
potentially higher numbers of dimensions being of need to code one bit than in black holes, we end
up with the following equation:

1 16-7w
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where k gives the numbers of dimensions being of need to store one bit.



Appendix: About the Dimensional Size of Systems

In classical systems science there is no way to derive the necessary dimension of a system in a truly
fundamental and neutral (mathematically based) manner. Thus, systems are often “defined” as it
pleases the creator of the simulation or as there are restrictions in ability and calculation power for
the “digital twin” of the natural system one intends to model. As this holds for any system, this is also
true — of course — for the unconscious or conscious mind and thus, of great interest here.

We start with the conjecture that not just the system’s inner properties and corresponding governing
equations but also the system’s size (number of degrees of freedom or dimensions) can be derived
from a suitable minimum principle. Our starting point shall this time be the Einstein-Hilbert action

with a generalized Lagrange density function @, [R] and a yet undefined variation, which we write

as follows:
8,W =0=5,[d"x(~g-®,[R]). (53)

Please note that we could also write this for a scaled metric tensor as elaborated in the previous
appendices in order to work out the connection to quantum theory, respectively, in order to make it
show itself directly via a set of wrapping and wave functions Fi[fi] and f; within the usual variational
calculus.

In order to adjust undefined parameters and finalize the character of the variational task (52), we
intend to consider a fundamental problem and here determine the size of a black hole in a
completely new way. Classically the size of a black hole is given by the Schwarzschild radius, which
2-m-G
c2
speed of light in vacuum). This Schwarzschild radius, however, was never derived from a first
principle, but was adjusted as a parameter to the Schwarzschild metric [14] in order to give the

correct limit to the Newton gravitational law.

itself is determined by the mass m of the black hole via: r, = (G... Newton'’s constant, c...

Here now we want to derive the Schwarzschild radius via a suitable version of (52). In order to do so,
we first need to repeat Bekenstein’s thought experiment of black holes.

The Bekenstein Bit-Problem

One of the most famous and equally puzzling problems in General Theory of Relativity is the
Bekenstein-Bit problem, where it was found that black holes can store information, but so far it is
been seen as a mystery how these objects actually do this. In [2, 7, 8] we have shown that bit-like
information is been stored as dimensions and that each bit becomes one dimension. For convenience
we are here repeating parts of the original evaluation.

In the early seventies J. Bekenstein [3, 4] investigated the connection between black hole surface area
and information. Thereby he simply considered the surfaces change of a black hole which would be
hit by a photon just of the same size as the black hole. His idea was that with such a geometric
constellation the outcome of the experiment would just consist of the information whether the
photon fell into the black hole or whether it did not. Thus, it would be a 1-bit information. His
calculations led him to the funny proportionality of area and information. He found that the number
of bits, coded by a certain black hole, is proportional to the surface area of this very black hole if

measured in Planck area ﬁf, . In fact, the dependency how one bit of information changes the area of
the black hole (AA) reads:



4
AA=32-n2-£i+64-n3-f—§. (54)

S

Thereby the derivation of this equation is performed as follows. At first we start with the assumption
that the photon’s right size should be a wavelength A of the Schwarzschild radius rs. Knowing that the
energy of the photon would be E=h*v, with denoting v the frequency and h giving the Planck
constant, and plugging in the equation for Schwarzschild radius of the photon related mass change
Am (with reduced Planck constant 7 and the Newton constant G):

4
ALC Ameo? = [E—h.y]s=C_hc

o ®© Mook NES)
_ Anc :E:Ars-rs=2h.3C}:4T°7/Ll'3G:475'6%:3&5:4“‘_P
2G I, c c L

S S

we can derive AA as follows:

AA = 4n((ArS +1 )2 _rsz) = 47T(2Ars I+ (Ars )2)

=32-1 -l +64-10 -2
I,

S

Ignoring the extremely small second term in the last line, one could just assume our black hole to be
constructed of many such bit surface pieces. Thus, we could write:

q-AA=q-32-7- A =4’ = r*=q-8x-£, (57)

where r, gives the radius of the black hole. We see that our black hole radius is proportional to the
square root of the bits g thrown into it.

Now we want to compare the dependency rs[q] with the radii rmax[N] resulting in maximum volume of
n-spheres for a certain number of space-time dimensions N=n+1.



rmax[N] and r;[q] for a variety of N=n+1 and q
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Fig. Al: Radius rmax for which at a certain number of dimensions the n-sphere has maximum volume

in dependency on N=n+1 compared with the increase of the Schwarzschild radius r; of a black hole

in dependence on the number of bits g thrown into it. We find that g=N=n+1. As examples we pick

the situation with a radius slightly bigger than 1.5 (whatever unit). We obtain maximum volume for

a sphere in 15 dimensions (orange dotted line). Picking a radius slightly below 1, however, gives us
a 6-dimensional sphere which can have maximum volume at such a size (green dotted line).

We find a perfect fit (s. figure Al) to the rmax[N]-dependency for g=N with the following function:

r,=U-(0.014948+0.3951244-[q); U*=8-7-¢2, (58)
where U denotes a unit-factor which was set U=1 in figure A1l.

Our finding does not only connect the intrinsic dimension of a black hole with its mass respectively its
surface, but also, at least partially, gives an explanation to the hitherto unsolved problem of “what
are the micro states of a black hole giving it temperature and allowing it to store information”.
According to the evaluation in this section, these microstates are just various states of dimensions
realized within the black hole in dependence on the number of bits it contains (and thus, its mass).
The bigger the number of bits, the higher the intrinsic dimensions the black hole has. In fact, the
connection even is a direct one and only seems to deviate from the simple direct proportionality for
very low numbers of masses?, respectively Schwarzschild radii rs, respectively numbers of bits g the
black hole has swallowed.

This finding also gives us a direct connection between a principle mathematical law (the maximum
volume as function of the dimension for a given radius of an n-sphere) to the number of bits a black

1 Besides, this deviation is also suggested by the Bekenstein finding summed up in equation (54), where we
could assume the second term to become of importance at lower numbers of rs.



hole contains, to the mass or Schwarzschild radius of this very black hole and the number and
character of microstates the black hole actually uses to internally code the bits.

It has to be pointed out that the expression “intrinsic dimension” truly stands for the part of space for
r<rs, which is to say, the space behind the event horizon. As for the outside, the solution of a
Schwarzschild object in n+1-dimensional space-times is given via:

—’-f[r] 0 0 0 - 0
1
0 — 0 0 0
fr]
O 0 0 0
0 0 0 r’-sing,
. .0
0 0 0 0 0 g
a—2
gy, =1 -sin’ @, -sin*@,; g, =r"-[[sin’¢; a=N-1=n; (59)
i=1
rSN—3 I_Sn—2
flr]=1- N3 =1- 2

As we find that the Newton laws of gravity, however, require N=4, it has to be assumed that in a
region near the event horizon the dimension of the black hole decreases to the known 4 dimensions
so that Newton’s laws of gravity are properly mirrored to us (as outside observers). The
corresponding derivation was given in [8] (chapter 11).

A System-Immanent Scale

Note: the correct solution for the evaluation of the Schwarzschild radius rs as function of the bits
thrown into a black hole object (if using the results from [15]) would be:

rs:2-€p-\/7r-(q+,/q-(1+q))! (60)

We find a perfect fit to the n-spheres with maximized volume to a given radius (dots in figure A1) with
a Planck length of ¢/, =0.07881256452824544 (s. figure A2, which is almost perfectly equal to the
fit in figure Al).




rmax[N] and r;[q] for a variety of N=n+1 and q
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Fig. A2 (Please note that we have applied a slightly different fit than it was applied in fig. Al):
Radius rmax for which at a certain number of dimensions the n-sphere has maximum volume in
dependence on N=n+1 compared with the increase of the Schwarzschild radius r; of a black hole in
dependence on the number of bits g thrown into it by using (59). We find that g=N=n+1.

But what would be the unit for this Planck length?

Well, it was already shown in [8] that by using the results from [15] and the “volume integral” (52)
with:

5,W=0=35,[d"x|-g, (61)
v
for n-spheres (in [15] with T[n]=1):
(n)
2
VNZVMI:T[H]'ﬁ'Vna (62)
r ==/

we have evaluated the very dimension n to which at a given radius rs the volume of a n-sphere has a
maximum. The rs are put into the calculation as plain “natural” numbers, meaning an rs=1is just a 1
and that is it. We might name this unit a “mathematical meter” or just “mams” (plural for
“mathematical meters”). Transformation to our usual units, like meters, requires the introduction of a
factor T[n]=U".

[£e], e 1.616255(18)x107* meters
©0.07881256452824544

With U = , for instance, we can easily change to our
[ I)]inimams
meters. Nevertheless it appears somehow astonishing that there seems to exist a fundamental

“natural” unit, being completely based on a mathematical - geometrical - extremal principle (the



maximum volume of n-spheres as functions of their dimensions for certain radii). It is also interesting
that these dimensions are so nicely correlated to the number of bits a black hole has swallowed. In
fact, using the unit of mams, the number of spatial (n-sphere) dimensions is perfectly equal to the
number of swallowed bits.

Thus, in the case that black holes would in fact store their content as dimensions and the Einstein-
Hilbert-Action being extended with respect to the number of dimensions in addition to the metric,
we immediately also get an absolute scale for our black hole system in which the number 1 is “made
out” of 12.6883 Planck length and where a 3-sphere has a radius of 0.6969979737167096 mam:s.

Back to the Optimum Size Question for any System

When observing the integral in (52), we see that — in principle — we seek for a maximum volume for a
given dimension or, taking the radius of a Schwarzschild object, look for the corresponding dimension
making the volume integral an extremum. As the determinant g of the Schwarzschild metric is just
equal to the one of a n-sphere with the additional time-dimension to be integrated, we can easily use
the volume integral result of n-spheres, which reads:

(n)

w2 .

VN:V =7 . (63)

2

Please note that due to the time-coordinate t we have V.1 instead of V.. Thereby the integration via t
in (62) is assumed to be performed such that it would give 1. In general, we might take care about
this part of the integration via a proportional constant T we could even consider to be n-dependent
T[n] and thus, equation (61):

. (n)
U 7[7
V=V, =Tl[n]- . (64)

Now we evaluate the various dimensions for which, for a given radius r of the n-sphere, we would
obtain extrema. The results were already given in figures A1 and A2. There we have illustrated the
resulting rmax as functions of the dimensions N=n+1 (note: n=n-sphere dimension, N=t+n-sphere
dimension).

Now we just compare our findings with the original question of extracting a minimum principle for
the dimensional size of a given system with our generalized starting point for the variational task (52)
and conclude that:

O,W=0= S?J‘dnx(«/—g O, [R])
\'%
=5,W=0=35,[d"x(J-g-[®, [R1=1]) =5, [d"x-¢
\' v
Thus, the determination of the optimum size of a system we intend to consider, investigate or analyze

can just be found by a dimensional variation of the volume integral of that very system. In the case of
spherical symmetries, this then leads to equations of the form:

(65)



(n)

7[2

Along the way we also can extract suitable fundamental scales for our system.

=8,W=0=5,[d"x(J-g-[®, [R]=1])=5,TIn]- s (66)

The First Bit Requires the Highest Mass = The First Thought is the Most Difficult

From (59) we can now extract the minimum Schwarzschild radius for the storage of one bit, which
would be equal to 5.508 Planck length and corresponds to 11.16 times the Planck mass. This is a huge
amount of mass and thus, also energy, one needs to safely store just one single bit. Luckily, the
situation improves the more bits one intends to store, as for instance the one millionth bit only
requires about 5.5%107 Planck masses. Please note that, of course, one might also store bits within
spin arrangements of electrons. Then a 1-bit information would be connected with a single electron,
whose mass and spin energy is many magnitudes below the Planck mass. This spin storage, however,
cannot be seen as a storage of a classical binary bit, because in fact it resembles a quantum bit.
Apparently, the safe storage of a pure and truly binary information requires an - almost - macroscopic
massive structure. Here the black hole probably provides the smallest possible mass ensemble there
can be to arrange such a storage for a certain bit. The limit is given at about 11 times the Planck mass.
Only from this mass onward black holes can store binary information... at least until the Hawking
radiation leads to a destruction of our black hole 1-bit storage system.

And what would then happen to the stored information? Well, this brings us to the question how safe
is information within our universe [16].

Byproducts: A few Fundamental Questions

About the Relativity of System-Scales

We saw that — similar to the Bekenstein or Bekenstein-Hawking problem (see reference [17]) — we
add bits via dimensions to our metric structure (here a black hole). Assuming our metric system to be
a black hole (which we here only use to have a simple as possible math), we can even obtain a ratio of

the black hole’s radius rs to the smallest structure this black hole can resolve. Taking the result for 7, -

the Planck length - from the Bekenstein thought experiment, we find the ratio between the
Schwarzschild radius rs of a black hole and 7, :

;—SP=2-Jn-(q+m)- (67)

In our universe the Planck length 7, is considered to be the smallest length possible to resolve. What

if the ratio (66), we found for black holes, actually is a more fundamental law? At any rate, it appears
logic to assume that more bits could be coded or stored by an object of bigger size and smaller
internal structure, thereby leaving more options to describe something with these structures. Thus,
the equation (66) makes intuitive sense, but could it also be just the other way round? Could it be
that to an object of given size the number of bits (being equivalent to its dimensions as we see in
figures A1, A2) it contains, determines the smallest scale — the Planck length — of the object, too?
And, if referring to the “Mathematical Psychology”, the system presents a thinking entity, does this
also mean that thoughts have a physical scale?

From inside and taking the Planck length as measure, the increase of information to this very object,
subject or entity would look like an increase of its size. Now assuming the inside of the black hole to



be a general system, the inhabitants of this system may see this system as their very own universe
and would register the increase of information as a growth of their “universe”, measured in the
Planck length of that very system-universe. When learning, we seem to feel the increase of mind.
May be this perception is just what is actually really going on.

Does More Information Always Mean More Mass?

Quantum computer scientists have already pointed out that, with our current way of storing
information, we will one day reach a limit with respect to the number of atoms we can apply for the
storing process and the energy being needed to keep the information stable (maintained). Citing from
the abstract of [18], we have the following situation:

“Currently, we produce ~10?* digital bits of information annually on Earth. Assuming a 20% annual
growth rate, we estimate that after ~350 years from now, the number of bits produced will exceed
the number of all atoms on Earth, ~10°°. After ~300 years, the power required to sustain this digital
production will exceed 18.5 x 10%> W, i.e., the total planetary power consumption today, and after
~500 years from now, the digital content will account for more than half Earth’s mass, according to
the mass-energy—information equivalence principle. Besides the existing global challenges such as
climate, environment, population, food, health, energy, and security, our estimates point to another
singular event for our planet, called information catastrophe.”

It has to be pointed out that when looking for possible inner Schwarzschild solutions [19], we also
found that there are solutions, where the mass decreases with the increase of the object size. It may
well be that such strange states are not only realized in black holes, but could perhaps also help to
overcome our future information storage problem.

Generalization to General Spheres?
In the sub-sections above we saw that, when taking the equation for the Laplace length /, from the

Bekenstein thought experiment [3, 4]), we find the following ratio between r; (Schwarzschild radius of
a black hole) and /7, (c.f. equation (66)):

i:z.Jn.(q+m). (68)

Most interestingly, we also found that the solution to the extremal volume problem for a fixed radius
rs for n-spheres results in the same dependency when variating with respect to the number of
dimensions of those n-spheres. We obtain (see dots in figures A1 and A2) excellent fits, when
applying an approach like:

rsz-\/n-(n+,/n-(l+n)). (69)

Thereby we have the characteristic (system-dependent) length scale L.

This automatically gives us a connection between the size-parameter r; of any system of spherical
symmetry and its theoretical capability to store information. A perfect mathematical n-sphere
thereby follows the rule (68) almost perfectly, while other systems may do so only from certain
critical sizes onwards, but, nevertheless, we think we can draw the conclusion that the information
storage capacity of given systems — if showing enough spherical symmetry — can be extracted from
(68). Then the structural size-parameter r; determines the number of storable bits n in dependence
on the system-immanent length parameter L.



From this, one even may deduce that r; and L could be substituted by other system characteristics.
While in (68) their dimension is length, we should not exclude mass, time, charges, energies and so
on.

Other Geometries

The simplest generalization of (64) can be given for an ensemble of N tori of dimensions n; for the
sub-nj-spheres of the individual torus. The volume integral would then yield:

nj

W:id“"(ﬁ)ﬂ%(npn)ﬂTEHJ'ﬁ'(n)’” - (70)

J

2

This could be further generalized for a sum of tori and leaves us with a great variety of pure volume
(radii) and dimension variations.

As tori can be seen as combined nj-spheres with n; giving the dimension of the sub-spheres
constructing each torus (64) can be generalized as follows when assuming N tori with dimensions n;
and sub-spheres of dimensions nj;:

i=1 i=1

W-Ew S e - S )
‘ r

Assuming that also complex symmetries of systems could be constructed out of sums of tori, we
realize that the variational options are manifold:

oW =0=8(n) R TT T[] 2 (o) )

=1 j=1 r (nij+2

and leave us with a great variety of options for an optimum sized system in the case of complex
symmetries.

Consequences from the Bekenstein Thought Experiment Regarding the
Solutions to the Quantum-Einstein-Field-Equations

In [2, 8] we have shown that the classical n-dimensional Schwarzschild solution could be applied to
construct internally structured n-dimensionally black holes, while outside we still have the usual 4-
dimensional solution from [14] with the classical Schwarzschild metric. This, however, would not
explain how the black hole can code any information.

With the help of the new metric solutions evaluated in [19], namely, to just give an example, in the
three-dimensional case with coordinates t, r and an angle:



—-* 0 0
g =C-f[t]'| 0 ¢ 0

R 73
0 0 t*sin(y) (73)
f[t] — /tii-c—l . Cf

(please note that r has become an angle while t took over the position of the radius),
> 0 0
g, =Cflt]*:| 0 p? 0
(74)

0 0 p’-sin(r)

+1C
f[t]=e ** -C,

(this represents a shell-like object) we want to solve also this problem. A generalization of this type
solution is been given in appendix N of [2]. Thereby, we found that the Schwarzschild singularity
could be avoided (fig. A3).

Fig. A3: “From the classical Schwarzschild solution to a Quantum Black Hole” [19]

At first, however, we should note that also the n-dimensional Schwarzschild solutions from [8],
section 3.8 (c.f. solution (58) in here) would provide plenty of options to code information, because
there are enough degrees of freedom regarding the thicknesses of the individual x-dimensional layers



of the onion-like Schwarzschild object, which was proposed there (see also [19]). Similar assumptions
could be made for the Robertson-Walker approach introduced in [19], but apart from again
mentioning the onion-layer structured ogre-mind from the movie Schreck, we will not further
consider these possibilities in here.

In the case of photonic inner solutions as also suggested in [19] one might assume some kind of
standing waves inside the black hole, but as we currently don’t have the math to realize such
structures, we postpone the investigation of this possibility.

Thus, we here concentrate on solutions (72), (73) as potential inner solutions to a black hole. As we
see that the parameter p clearly is a length, we want to derive its properties. For the general case this
was already done in appendix N. Nevertheless, we repeat it here for the setting (72) and (73). From
basic quantum theory we know that a particle at rest has the time dependency:

. lIl~C2
. -t

flil=e " -G, (75)

with m giving the rest mass of the particle and 7 denoting the reduced Planck constant. Comparing
with the f[t]-function from the metric solution (73), we find:

m-c 1
—_— = (76)
h 2-p
: : . 2-m-G , o
Inserting the Schwarzschild radius 7, = ———— (G... Newton’s constant, c... speed of light in
c
vacuum), thereby substituting the rest mass m, leaves us with:
3 -1 2
I.-C 1 1 3 l
v = NNy N | (77)
2-h-G  2-p r, \A-G I,
Here 7, denotes the Planck length. By inserting (66) into (76) we obtain:
0 I l
p=—L . : . . (78)

I =2'€p'\/7f'(q+m) 2'\/7T‘(C]+\/m)

Thus, while for a black hole the number of bits thrown into it leads to an almost perfectly square-
root-like increase of the Schwarzschild radius in accordance with equation (66), the p-parameter of
the (73)-objects decreases with the number of bits. (73)-objects would have the same p-parameter,
which we may see as a size, as a black hole only for Schwarzschild radii rs equal to the Planck length.
In other words, for growing black holes with radii bigger than the Planck length the corresponding
equally heavy (73)-objects would be significantly smaller than the black holes.

So, we ask: Could the (73)-objects be used as building blocks for the black holes, residing inside it,
which is to say behind the event horizon?

Assuming that the black hole’s surface is made out of metric spherical objects of the type (73) and
further assuming that each of these objects in the surface of the black hole, which is to say at r=r
(which also happens to be the event horizon), requires its own surface space of something like C,*p?,
we can directly evaluate the number of such (73)-objects, we from now on name p-spheres, are
residing inside the event horizon with increasing numbers of bits thrown into the black hole.
Assuming that the mass is always additive, the total mass m of the black hole must then be
distributed among the N p-spheres, which changes (76) to:



o3 1 1 3 \! 2 2
¢ _ — N.p=—- ¢ =£_P = p= & . (79)
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Also having to satisfy the following equation for the N p-spheres sitting on the surface, we have to
solve the following equation:

2 2
N-C -p" =471

G (AL .
:>Cp-4.n'N.(q+m)—(4'7r) t-(a+Ja-(1+9)). (80)

1

N= 2
64-1° -(q+1/q(l+q))

We realize, that such a structure could not be used to store any information, because the number of
p-spheres should have to increase with the number of bits and not decrease as it does. Things are
improving the moment we allow a combination of p-spheres and (72)-objects (the latter we shall call
t-spheres) to make up our inner black hole. We propose the following (simplest of the many
possibilities) structure:

A) In the center of the black hole sits a p-spheres of “radius-parameter” p given in (76) and thus,
2

p= —2 which is to say, the bigger the Schwarzschild radius rs of the black hole, the smaller
I

its core. In fact, for infinite masses the core would become a singularity.

B) This single p-sphere core is surrounded by t-spheres (72) and the number of those t-spheres,
which a black hole can bind, is proportional to the number of bits the black hole has
swallowed.

C) Taking the Bekenstein-condition, this demands an average size for the t-spheres, being bound
by the black hole or the black hole’s surface, to be such that its projected surface would be

equal to Ei . In other words, we could assume the average radius of the t-spheres (the ones

bound to the black hole) to be equal to 7, /\/;.

With such a structure, it is very well possible that in fact black holes have no singularity and follow
our scheme of inner-outer-solution, but one cannot detect any difference to the classical
Schwarzschild solution from the outside, because the inner-parts are always hidden behind the event
horizon.

But does this help us to solve the Bekenstein information problem?
Yes, it does.

We can imagine many t-sphere objects (of number N=q) sitting on the surface of the black hole. As
the generalized solution to (72) would read:

—c? 0 0
g =Cf[t]'] 0 A-¢ 0
0 0 B--sin(y)}?)’ (81)



we see that each t-sphere could not only store information via a certain sign within the exponent, but
also via the free parameter B.

The Size of the Electron?

Applying (78) and assuming a p-sphere-structure for the electron, gives us:

-1
r-c’ _ 1 . N-pzl- ¢’ :ﬁ
2-h-G  2-N-p , \#-G I, (82)
2 1.93x107"° '
= p= = meter
N1,

Setting N=1 we would end up with a p-sphere of p=1.93x 10" meter for the “pure” or “naked”
electron.
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