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Abstract 
Directly applying the classical approaches for the simplest lineariza�on of the Einstein Field Equa�ons 
under the assump�on of weak gravita�onal fields and small veloci�es, we not only obtain clearly 
wave-like field equa�ons in vacuum for the original Einstein equa�ons, but also for the corresponding 
quantum gravity field equa�ons. 

We even find similar solu�ons for gravita�onal waves, though with more flexibility (degrees of 
freedom), no need for a postula�on of mater and – of course – the right limi�ng behavior in the case 
of vanishing quantum effects. The convergence to the classical case concerns both, the field 
equa�ons and its wave-like solu�ons, but with respect to the field equa�ons, we realize that the 
transi�on allows us a glimpse into the nature of quantum atributes.  

Introduc�on 
Gravity waves are an outcome of Einstein’s great general theory of rela�vity and they are a standard 
topic in the corresponding textbook literature (e.g. [1], pp 325). Usually, the deriva�ons are restricted 
to the linearized Einstein Field Equa�ons and – if even men�oned – the problem of quan�za�on, 
respec�vely quan�zed wave solu�ons is not discussed… simply, so it is said, there is no quantum 
gravity theory. 

In this paper, we will present a simple extension of the classical linear gravity waves, showing how 
this might lead to a linearized Quantum Gravity approach. Thereby, one can show that we are able to 
obtain such equa�ons via the quan�za�on of the classical recipe and a direct lineariza�on of our own 
quantum gravity star�ng point. In this paper, however, we will only demonstrate the first approach. 
We will demonstrate that it requires only a small adapta�on of the classical Hilbert and Einstein 
achievements [2, 3] to come up with such a Quantum Gravity Theory or – as it is some�mes also been 
called - a “Theory of Everything”.  

In a variety of previous publica�ons [4 – 13], this author has shown how a simple scaling factor to the 
metric tensor already leads to a quantum gravity field equa�onal outcome. The “problem” with this 
finding of course is, that Hilbert should get all the credit for already having found a - or THE - “Theory 
of Everything” over 100 years ago, namely in 1915 [1]. There wasn’t much to be done, unless one 
counts adding a scaling factor [4 - 13] or a set of such [6, 7, 8, 14, 15] as “much”, which this author 
defini�vely does not do. He sees such a “work” as a mere finding in another’s paper, namely, Hilbert’s 
“Die Grundlagen der Physik” from 1915 [1]. However, with tens of thousands of jobs at stake because 
they all depend on the fact that – apparently - there is no Theory of Everything yet, people obviously 
have problems or – to use a psychological term in order to give - at least - some of these scien�sts an 
excuse for their blindness – face an undeniable cogni�ve dissonant barrier to recognize that Hilbert 
has already done almost all the work. Worse s�ll, it was also shown [19] that – in principle – 
varia�onal kernels in the Einstein-Hilbert ac�on of the type f[R], as they are necessary to produce the 
endless output of new field equa�ons, some of the more crea�ve and paper-produc�ve researcher 
are permanently proposing, and as they are also necessary for so many other Trans-Planckian 



approaches (e.g. [16, 17, 18]), are not of need, because those could always be subs�tuted by a 
suitable metric scaling factor [8, 19] without changing the total varia�onal (Hilbert!!!) integral, which 
– a�er all – is a scalar. With the poten�al wall of recogni�on too high to be overcome by most of the 
string, loop-gravity, trans Planckians and whatever else researchers, perhaps the quantum 
mechanical tunneling will help them to just – one day – miraculously diffuse through this barrier. Un�l 
then, the circus will probably produce tens of thousands more of completely useless “scien�fic” 
“contribu�ons”, while the simple fact that the job was already done over 100 years ago con�nues to 
be ignored or hushed up. 

Nevertheless, in here, we will apply the rather straight forward and very rich Hilbert approach… just a 
�ny bit expanded, respec�vely, generalized. 

A Quantum Gravity Theory  
We start with the following scaled metric tensor and force it into the Einstein-Hilbert ac�on 
varia�onal problem [2] as follows: 
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Here Λ is the cosmological constant, G denotes the determinant of the metric tensor from (1) and R* 
gives the corresponding Ricci scalar. Performing the varia�on with respect to the metric Gαβ results in: 
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and shows us that we have not only obtained the classical Einstein Theory of General Rela�vity [3] 
(see boxed terms exactly giving the Einstein Field Equa�ons in vacuum plus the cosmological constant 
term), but also a set of quantum field equa�ons for the scaling func�on F, clearly playing the role of 
the wave-func�on. It was shown in our previous publica�ons [4, 5, 6, 7, 8] that these addi�onal terms 
are quantum equa�ons, fully covering the main aspects of rela�vis�c classical quantum theory. 
Everything else can be obtained by a few generaliza�ons, structural shaping and the introduc�on of 
the varia�on with respect to the degrees of freedom or number of dimensions [4, 5, 6, 7, 8]. So, we 
conclude, that we indeed have a Quantum Gravity Theory or Theory of Everything, as one also calls it, 
at hand, whereby it should be pointed out that (2) has to be considered the simplest possible – and 
s�ll general (see [4, 5, 6, 7, 8]) - form for the corresponding quantum gravity field equa�ons. More 
complex versions are containing many scaling factors (e.g. [6, 7, 8, 14, 15]). 



“Weak Gravity” and Linearity – The Transi�on to the Classical 
Quantum Theory 
It was shown in [5, 6, 7, 8] that the so-called “weak gravity” condi�on: 
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together with a se�ng for the scaling func�on F[f] as follows: 
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leads to a significant simplifica�on and scalariza�on of the quantum gravity field equa�ons (2), 
namely: 
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This equa�on is completely linear in f, which not only has the characteris�cs of a quantum func�on, 
but – for a change – gives us the opportunity to metrically see what QUANTUM actually means, 
namely, a volume jiter to the metric of the system in ques�on… at least this is one quantum op�on, 
because we have already seen others, like the perturbated kernel (e.g. see [8]). 

Interes�ngly, for metrics without shear elements:  
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and applying the solu�on for F[f] from (4) the deriva�ve terms in (5), which is to say: 
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converge to the ordinary Laplace operator, namely: 
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We recognize the rela�vis�c Klein-Gordon equa�on. 

Thus, in the case of n>2 we always also have the op�on for a constant (broken symmetry) solu�on of 
the kind: 

 f 0 f 00 ff C C⇒−= = . (9) 

In all other cases, meaning where f 0f C≠ , we have the simple equa�ons: 
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A cri�cal argument should now be that this equa�on is not truly of Klein-Gordon character as it does 
contain neither poten�al nor mass, but this author has already shown that this problem is easily 
solved by adding addi�onal dimensions carrying the right proper�es to produce masses and 
poten�als due to entanglement, being provided by the right scaling func�on F[f] (e.g. [4 – 8]). 

Using these results we were able to develop a quantum gravity sta�s�cs [9, 10], formulate a 
Heisenberg uncertainty principle containing gravity [12] and even sugges�ng a path for answering the 
riddle of the 3 genera�ons of elementary par�cles [13]. 

Finding Mater 
Observing our varia�onal result (2) and comparing with the classical equa�ons from [3]: 

 1R R g g T
2αβ αβ αβ αβ− ⋅ + Λ ⋅ = −κ ⋅ , (11) 

where we have: Rαβ, Tαβ the Ricci- and the energy momentum tensor, respec�vely, while the 
parameters Λ  and κ  are constants (usually called cosmological and coupling constant, 
respec�vely), we realize that the following terms of (2) are just the most natural energy momentum 
tensor elements, yielding the following iden�ty: 
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That being said, however, it should be pointed out that s�ll Hilbert’s introduc�on of the mater 
Lagrange density into his varia�onal integral or Einstein’s incorpora�on of the mass energy tensor 
into his field equa�ons makes s�ll sense as it accounts for a poten�al non-perfect extremal condi�on 
[8, 12, 20, 21], a universal cellular structure [14] and a few other things [20]. 

Towards Quantum Gravity Wave Solu�ons 
Star�ng With the Classical Linearized Field Equa�ons 
Directly applying the results from [1], thereby using the classical lineariza�on of the Einstein Field 
Equa�ons under the assump�on of weak gravita�onal fields and small veloci�es, we obtain the 
following field equa�ons in vacuum: 
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Thereby we have: 
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with the gauge condi�on: 

 , 0ν
µνψ = , (15) 

and µνη deno�ng the metric tensor in Minkowski or Cartesian space-�mes. 

The solu�on to (13) is known to be: 

 µe u k x ; k k 0; e k 0σ ν ν
µν µν σ µν µν ψ = ⋅ η = =  , (16) 

Where we have the wave vector kσ and the amplitude matrix of constants eμν. 

Now we remember that we can always extend the metric tensor in accordance with (1) and that then 
(13) can be expanded as follows: 
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because instead of (14), with a scaled metric tensor we have: 
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The Laplace opera�on in (17) can be expanded using the following patern: 
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and results in: 

 
( )

( ) ( ) ( )

µ
,µ

* *

weak gravity

gauging F 0

2

1R R G 0
2

1 1F F 0 F 0
2 F x x 2 F

ν

αβ αβ

→ ⋅ψ =

αβ
µν η µν η µνα β

− ⋅ =

→

→

∂
η ⋅ψ = ∆ ⋅ψ = ⇒ ∆ ⋅ψ =

⋅ ∂ ∂ ⋅

. (20) 

 ( )F F F 2 F 0αβ
η µν η µν µν η α µν β∆ ⋅ψ = ⋅∆ ψ +ψ ⋅∆ + ⋅η ⋅∂ ψ ⋅∂ = . (21) 

Usually, the expansion is also necessary for the operator itself, whereby it generally holds: 
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Applying this on (21) would generally yield: 



 

MG MG

g g, ,
2 2

, ,
2

,
,

0 F F 2 G F

FF F
F g g F 2 G F

F F F F
FF F 2F F

F F F F
F
F

αβ
µν µν α µν β

µνα ααβ αβ αβ
β µν µν β α µν β

ηα ααβ αβ αβ
β µν η µν µν β α µν β

α αβ
µν β η µν

= ⋅∆ ψ +ψ ⋅∆ + ⋅ ⋅∂ ψ ⋅∂

∆ ψ ∆   
= ⋅ ⋅ ⋅∂ ψ + +ψ ⋅ ⋅ ⋅∂ + + ⋅ ⋅∂ ψ ⋅∂   

   
∆ 

= ⋅η ⋅∂ ψ + ∆ ψ +ψ ⋅ ⋅η ⋅∂ + + ⋅η ⋅∂ ψ ⋅∂ 
 

= ⋅η ⋅ψ + ∆ ψ + ,
, , ,2

,
, , ,2

,
, , ,

FF 2F F
F F F

FF 3F F
F F F

F
F F F 3 F 0

F

ηα αβ αβ
µν β µν α β

ηα αβ αβ
η µν µν β µν α β

α αβ αβ
η µν µν β η β µν α

∆ 
ψ ⋅ ⋅η ⋅ + + ⋅η ⋅ψ ⋅ 

 
∆ 

= ∆ ψ +ψ ⋅ ⋅η ⋅ + + ⋅η ⋅ψ ⋅ 
 

⇒

 
⋅∆ ψ +ψ ⋅ ⋅η ⋅ + ∆ + ⋅η ⋅ ⋅ψ = 

 

, (23) 

but in the case of the classical approxima�on we only have the operator as given in the last line of 
(13). Of course, one could always think about a superposi�on of plane wave solu�ons to effec�vely 
form more complex geometries, but this will not be covered in here. Hence, our final equa�on here 
would be (21), which, when compared with the classical equa�on (13), offers a few more op�ons and 
might account for mater without the need to ar�ficially introduce it. However, we find that with the 
se�ng (16) and: 

 µF f k x ; k k 0σ ν
σ µν = η =  , (24) 

both equa�ons, (21) and (23), would be sa�sfied. So, the last line of (23) then gives: 
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and we would s�ll have the classical gravita�onal wave solu�on, only that, this �me, we also have an 
addi�onal scaling factor F, which shows the same wave character as the metric tensor. So, we already 
have reproduced Einstein’s gravity waves and the basis of our quantum gravity field equa�ons by 
applying Einstein’s approxima�on for the lineariza�on. When se�ng F=const=1 we even obtain the 
classical original. It should be noted that we now even have the principle op�on of the metric being a 
metric of constants and only F depending on the coordinates, then, only considering (21), sa�sfying 
the resul�ng field equa�on: 
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which – as before – with (24) gives: 
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We were able to not only extract the classical gravity waves from our quantum gravity field equa�ons 
(2), but also to achieve extended (“quantum gravity”) versions of the later. The approach with the 
scaling factor (1) may appear trivial, even primi�ve, because – a�er all - the total metric solu�on for 
our case here reads: 
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but even when only considering the wave op�on, we are off with something richer than the classical, 
non-scaled case. 
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