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Abstract

We have recently shown that by directly applying the classical approaches for the simplest
linearization of the Einstein Field Equations under the assumption of weak gravitational fields and
small velocities, we not only obtained wave-like field equations in vacuum for the original Einstein
equations, but also for the corresponding quantum gravity field equations.

As a by-product we also found a path to explain the special appearance of the 4 big dimensions.

Introduction

Gravity waves are an outcome of Einstein’s great general theory of relativity and they are a standard
topic in the corresponding textbook literature (e.g. [1], pp 325). Usually, the derivations are restricted
to the linearized Einstein Field Equations and — if even mentioned — the problem of quantization,
respectively quantized wave solutions is not discussed.

In this paper, we will present a simple extension of the classical linear equations, showing how this
might lead to a Quantum Gravity approach. Yes, we know that — in principle — we already have a
Quantum Gravity theory, but the linearized version, achieved with Einstein’s approximation for the
derivation of his famous quadrupole equation (e.g. [1], p. 340, which we here give because Einstein
made a trivial mistake in his original work), leads to some interesting connections with important
physical aspects like the question of the metric origin of the Klein-Gordon equation and the
dominance of our global 4 dimensions. These two aspects will be considered here. Thereby, we will
demonstrate that it requires only a small adaptation of the classical Hilbert and Einstein
achievements [2, 3] to come up with internally consistent and non-approximated Quantum Gravity
Theory or — as it is sometimes also been called - a “Theory of Everything”.

In a variety of previous publications [4 — 13], this author has shown how a simple scaling factor to the
metric tensor already leads to a quantum gravity field equational outcome. The “problem” with this
finding of course is, that Hilbert should get all the credit for already having found a - or THE - “Theory
of Everything” over 100 years ago. There wasn’t much to be done, unless one counts adding a scaling
factor as “much”, which this author definitively does not. He sees such a “work” as a mere finding in
another’s paper, namely, Hilbert’s “Die Grundlagen der Physik” from 1915 [1]. However, with tens of
thousands of jobs at stake because they all depend on the fact that — apparently - there is no Theory
of Everything yet, people obviously have problems or — to use a psychological term in order to give -
at least - some of these scientists an excuse for their blindness — face an undeniable cognitive
dissonant barrier to recognize that Hilbert has already done almost all the work. Worse still, it was
also shown [12] that —in principle — variational kernels in the Einstein-Hilbert action of the type f[R],
as they are necessary to produce the endless output of new field equations, some of the more
creative and paper-productive researchers are permanently proposing, and as they are also necessary
for so many other Trans-Planckian approaches (e.g. [13, 14]), are not of need, because those could
always be substituted by a suitable metric scaling factor [12] without changing the total variational
(Hilbert!!!) integral, which — after all — is a scalar. With the potential wall of recognition too high to be



overcome by most of the string, loop gravity, trans Planckians and whatever else researchers, perhaps
the quantum mechanical tunneling will help them to just — one day — miraculously diffuse through
this barrier. Until then, the circus will probably produce tens of thousands more of completely useless
“scientific” “contributions”, while the simple fact that the job was already done over 100 years ago
continues to be hushed up.

De facto, one may even say that this author also just “produces papers”. Even worse, he always
repeats the same things. This, however, is more for convenience in order to give the essentials before
adding the new aspect, the author intends to consider. We see no need to hide the redundancy.
Those who are already familiar with the basics, they can easily skip the introduction and first theory
sections.

In here, we will apply the rather straight forward and very rich Hilbert approach... just a tiny bit
expanded, respectively, generalized.

A Quantum Gravity Theory

We start with the following scaled metric tensor and force it into the Einstein-Hilbert action
variational problem [2] as follows:
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Here A is the cosmological constant, G denotes the determinant of the metric tensor from (1) and R
gives the corresponding Ricci scalar. Performing the variation with respect to the metric Gug results in:
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and shows us that we have not only obtained the classical Einstein Theory of General Relativity [3]
(see boxed terms exactly giving the Einstein Field Equations in vacuum plus the cosmological constant
term), but also a set of quantum field equations for the scaling function F, clearly playing the role of
the wave-function. It was shown in our previous publications [4, 5, 6, 7, 8] that these additional terms
are quantum equations, fully covering the main aspects of relativistic classical quantum theory.
Everything else can be obtained by a few generalizations, structural shaping and the introduction of
the variation with respect to the degrees of freedom or number of dimensions [4, 5, 6, 7, 8]. So, we
conclude, that we indeed have a Quantum Gravity Theory or Theory of Everything, as one also calls it,



at hand, whereby it should be pointed out that (2) has to be considered the simplest possible —and
still general (see [4, 5, 6, 7, 8]) - form for the corresponding quantum gravity field equations.

“Weak Gravity” and Linearity — The Transition to the Classical
Quantum Theory

It was shown in [5, 6, 7, 8] that the so-called “weak gravity” condition:

Gravity

op ap abgop Vol <d gmB
5GP = G .5, + G5 s =S5, 3)
together with a setting for the scaling function F[f] as follows:
4
F[f]= CF-(f+Cf)n72 n#2 4)

C,-e"™ n=2

leads to a significant simplification and scalarization of the quantum gravity field equations (2),
namely:
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This equation is completely linear in f, which not only has the characteristics of a quantum function,
but — for a change — gives us the opportunity to metrically see what QUANTUM actually means,
namely, a volume jitter to the metric of the system in question... at least this is one quantum option,
because we have already seen others, like the perturbated kernel (e.g. see [8]).

Interestingly, for metrics without shear elements:
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and applying the solution for F[f] from (4) the derivative terms in (5), which is to say:
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We recognize the relativistic Klein-Gordon equation.

Thus, in the case of n>2 we always also have the option for a constant (broken symmetry) solution of
the kind:

0=f-C, > f=C,. )

In all other cases, meaning where f Cfo , we have the simple equations:
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A critical argument should now be that this equation is not truly of Klein-Gordon character as it does
contain neither potential nor mass, but this author has already shown that this problem is easily
solved by adding additional dimensions carrying the right properties to produce masses and
potentials due to entanglement, being provided by the right scaling function F[f] (e.g. [4 — 8]).

Using these results we were able to develop a quantum gravity statistics [9, 10], formulate a
Heisenberg uncertainty principle containing gravity [12] and even suggesting a path for answering the
riddle of the 3 generations of elementary particles [13].

Finding Matter
Observing our variational result (2) and comparing with the classical equations from [3]:
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where we have: Rgg, Top the Ricci- and the energy momentum tensor, respectively, while the

parameters A and K are constants (usually called cosmological and coupling constant,
respectively), we realize that the following terms of (2) are just the most natural energy momentum
tensor elements, yielding the following identity:
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Finstein’s Linearization

Directly applying the results from [1], thereby using the classical linearization of the Einstein Field
Equations under the assumption of weak gravitational fields and small velocities, we obtain the
following field equations in vacuum:
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and Ny denoting the metric tensor in Minkowski or Cartesian space-times.

The wave solution to (13) is given in [1, 13], but as it is not of interest here, we skip this part and
move directly on to the corresponding quantized linearized field equations.

We remember that we can always extend the metric tensor in accordance with (1) and that then (13)

can be expanded as follows:
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The Laplace operation in (16) can be expanded using the following pattern:
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The expansion is also necessary for the operator itself, whereby it generally holds:
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which, when compared with the classical equation (13), offers a few more options and might account
for matter without the need to artificially introduce it via the Hilbert matter density or the energy
momentum tensor. In [13] we have shown that for F=const, we can find classical and for F=f[kox°]
guantum gravity wave solutions.



With respect to the operator expansion (21) it needs to be pointed out that the original Einstein
linearization starts with local geodesic coordinates on a Cartesian map. So, in principle the Laplace
operator in (13) should always be considered Cartesian and no expansion of the type (21) would be of
need. However, as we can apply superposition not only to the solutions of the equation (13), but also
— due to its linear character —to the equation itself, we can effectively construct many geometrical
forms out of the simple cartesian one. Hence, our derivation (21).

An Alternative Path to the “Wave” Solutions / An
Important By-Product

Expanding the Operator

So, we already have reproduced the classical equation and found additional quantum gravitational
solutions to the Einstein-linearized field equations. Nevertheless, we here also want to watch out for
other solutions. Thereby, not being all too happy with the non-linear term in F in our linearized

F
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This means, that for a given weak gravity “tensor” vy, we have a linear equation in the scalar wave

function W. If of bold character or mood, one may now even conclude that the equation in the last
line of (23) could be interpreted as the equivalent for the classical Klein-Gordon equation under the
assumption of weak gravitational fields and small velocities, because within the terms:
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we might want to recognize something like generalized mass and potential. Contraction should then
give us the classical scalar Klein-Gordon equation via:
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Well, indeed, we recognize the main parts of the Klein-Gordon equation, but we are anything but
happy that we still have the term with the first derivatives in there. Something is missing — obviously.

Going back to (21) and remembering that the complete variational integral with the Einstein-
linearization from above would read (A=0):
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Now we take into account that in the current — Einstein-linearization - approximation the variation is
producing non-constant/variable terms of second order, meaning:
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where we — as before — ignore these higher order terms and obtain:
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The last term can be integrated by parts in two different ways:
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Consequently, the results for the last line of (28) read as follows:
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for the first equation in the last line of (30), leading to:
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We realize the two options (31) and (33) to coincide with our own quantum field equation
linearization under “weak gravity” (3) and F satisfying (4) with n=10 and n=4, respectively. While the
meaning for 4 is obviously connected with the space-time on bigger scales, the n=10-option is of
importance with many string and brane theories [14]. Regarding the metric picture, however, the two
options will merge to one again when finally forming the complete metric tensor (thereby taking into
account all approximations and simplifications being made along the way).

lgnoring the Operator Expansion
Directly using (19) yields:
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we would have no non-linear term in F. Hence, we have the following expression under the variation
Hilbert integral:
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As above, we take into account that in the Einstein-linearization the variation is producing non-
constant/variable terms of second order, meaning:

Y

o W
SGuvM)nT+88[hz], (37)

where — as before — we ignore these higher order terms and obtain:

v

n i
0=[d"xy=g - F (F- Aoy + W, AyoF+2:G™ 0, y,,, - 0,F) ”F
v

LCEN . (38)

= [d"x=g F-(F-AygWy + W, Ay F+2:G -8,y - O,F)n™
v
The last term can be integrated by parts in two different ways:
ap
n o AY n g A%
Id X [_g F(zG p .Wuv,a F,B)n“ :2J.d X [_g F(_F .Wuv,a F,ﬁJT]“
\% \'

=2 [d"xy=g (& Wy - Fy )" . (39)
Vv

=0

AWy
[as,-(2-g we F)n-2-[a'xy—g -2 -(V-g -2 v, ) PR
ov A\

=0

AgF
[ds,(2:g v, Fo)n =2 [d'x =g -2 (V=g - Fy) w0
ov A%

This time, as only the first path is of interest to us, the result for the last line of (38) reads as follows:
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Here now, especially with h containing a whole metric tensor, we recognize the Klein-Gordon
equation with equivalents for mass and potential. We can further simplify when expanding the G-
Laplace-operator in the general way:
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Interested in avoiding the non-linear term in F, we set again:
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