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Abstract 
We have recently shown that by directly applying the classical approaches for the simplest 
lineariza�on of the Einstein Field Equa�ons under the assump�on of weak gravita�onal fields and 
small veloci�es, we not only obtained wave-like field equa�ons in vacuum for the original Einstein 
equa�ons, but also for the corresponding quantum gravity field equa�ons. 

As a by-product we also found a path to explain the special appearance of the 4 big dimensions. 

Introduc�on 
Gravity waves are an outcome of Einstein’s great general theory of rela�vity and they are a standard 
topic in the corresponding textbook literature (e.g. [1], pp 325). Usually, the deriva�ons are restricted 
to the linearized Einstein Field Equa�ons and – if even men�oned – the problem of quan�za�on, 
respec�vely quan�zed wave solu�ons is not discussed. 

In this paper, we will present a simple extension of the classical linear equa�ons, showing how this 
might lead to a Quantum Gravity approach. Yes, we know that – in principle – we already have a 
Quantum Gravity theory, but the linearized version, achieved with Einstein’s approxima�on for the 
deriva�on of his famous quadrupole equa�on (e.g. [1], p. 340, which we here give because Einstein 
made a trivial mistake in his original work), leads to some interes�ng connec�ons with important 
physical aspects like the ques�on of the metric origin of the Klein-Gordon equa�on and the 
dominance of our global 4 dimensions. These two aspects will be considered here. Thereby, we will 
demonstrate that it requires only a small adapta�on of the classical Hilbert and Einstein 
achievements [2, 3] to come up with internally consistent and non-approximated Quantum Gravity 
Theory or – as it is some�mes also been called - a “Theory of Everything”.  

In a variety of previous publica�ons [4 – 13], this author has shown how a simple scaling factor to the 
metric tensor already leads to a quantum gravity field equa�onal outcome. The “problem” with this 
finding of course is, that Hilbert should get all the credit for already having found a - or THE - “Theory 
of Everything” over 100 years ago. There wasn’t much to be done, unless one counts adding a scaling 
factor as “much”, which this author defini�vely does not. He sees such a “work” as a mere finding in 
another’s paper, namely, Hilbert’s “Die Grundlagen der Physik” from 1915 [1]. However, with tens of 
thousands of jobs at stake because they all depend on the fact that – apparently - there is no Theory 
of Everything yet, people obviously have problems or – to use a psychological term in order to give - 
at least - some of these scien�sts an excuse for their blindness – face an undeniable cogni�ve 
dissonant barrier to recognize that Hilbert has already done almost all the work. Worse s�ll, it was 
also shown [12] that – in principle – varia�onal kernels in the Einstein-Hilbert ac�on of the type f[R], 
as they are necessary to produce the endless output of new field equa�ons, some of the more 
crea�ve and paper-produc�ve researchers are permanently proposing, and as they are also necessary 
for so many other Trans-Planckian approaches (e.g. [13, 14]), are not of need, because those could 
always be subs�tuted by a suitable metric scaling factor [12] without changing the total varia�onal 
(Hilbert!!!) integral, which – a�er all – is a scalar. With the poten�al wall of recogni�on too high to be 



overcome by most of the string, loop gravity, trans Planckians and whatever else researchers, perhaps 
the quantum mechanical tunneling will help them to just – one day – miraculously diffuse through 
this barrier. Un�l then, the circus will probably produce tens of thousands more of completely useless 
“scien�fic” “contribu�ons”, while the simple fact that the job was already done over 100 years ago 
con�nues to be hushed up. 

De facto, one may even say that this author also just “produces papers”. Even worse, he always 
repeats the same things. This, however, is more for convenience in order to give the essen�als before 
adding the new aspect, the author intends to consider. We see no need to hide the redundancy. 
Those who are already familiar with the basics, they can easily skip the introduc�on and first theory 
sec�ons. 

In here, we will apply the rather straight forward and very rich Hilbert approach… just a �ny bit 
expanded, respec�vely, generalized. 

A Quantum Gravity Theory  
We start with the following scaled metric tensor and force it into the Einstein-Hilbert ac�on 
varia�onal problem [2] as follows: 
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Here Λ is the cosmological constant, G denotes the determinant of the metric tensor from (1) and R* 
gives the corresponding Ricci scalar. Performing the varia�on with respect to the metric Gαβ results in: 
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and shows us that we have not only obtained the classical Einstein Theory of General Rela�vity [3] 
(see boxed terms exactly giving the Einstein Field Equa�ons in vacuum plus the cosmological constant 
term), but also a set of quantum field equa�ons for the scaling func�on F, clearly playing the role of 
the wave-func�on. It was shown in our previous publica�ons [4, 5, 6, 7, 8] that these addi�onal terms 
are quantum equa�ons, fully covering the main aspects of rela�vis�c classical quantum theory. 
Everything else can be obtained by a few generaliza�ons, structural shaping and the introduc�on of 
the varia�on with respect to the degrees of freedom or number of dimensions [4, 5, 6, 7, 8]. So, we 
conclude, that we indeed have a Quantum Gravity Theory or Theory of Everything, as one also calls it, 



at hand, whereby it should be pointed out that (2) has to be considered the simplest possible – and 
s�ll general (see [4, 5, 6, 7, 8]) - form for the corresponding quantum gravity field equa�ons. 

“Weak Gravity” and Linearity – The Transi�on to the Classical 
Quantum Theory 
It was shown in [5, 6, 7, 8] that the so-called “weak gravity” condi�on: 
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together with a se�ng for the scaling func�on F[f] as follows: 
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leads to a significant simplifica�on and scalariza�on of the quantum gravity field equa�ons (2), 
namely: 
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This equa�on is completely linear in f, which not only has the characteris�cs of a quantum func�on, 
but – for a change – gives us the opportunity to metrically see what QUANTUM actually means, 
namely, a volume jiter to the metric of the system in ques�on… at least this is one quantum op�on, 
because we have already seen others, like the perturbated kernel (e.g. see [8]). 

Interes�ngly, for metrics without shear elements:  
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and applying the solu�on for F[f] from (4) the deriva�ve terms in (5), which is to say: 
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converge to the ordinary Laplace operator, namely: 
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We recognize the rela�vis�c Klein-Gordon equa�on. 

Thus, in the case of n>2 we always also have the op�on for a constant (broken symmetry) solu�on of 
the kind: 

 f 0 f 00 ff C C⇒−= = . (9) 

In all other cases, meaning where f 0f C≠ , we have the simple equa�ons: 
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A cri�cal argument should now be that this equa�on is not truly of Klein-Gordon character as it does 
contain neither poten�al nor mass, but this author has already shown that this problem is easily 
solved by adding addi�onal dimensions carrying the right proper�es to produce masses and 
poten�als due to entanglement, being provided by the right scaling func�on F[f] (e.g. [4 – 8]). 

Using these results we were able to develop a quantum gravity sta�s�cs [9, 10], formulate a 
Heisenberg uncertainty principle containing gravity [12] and even sugges�ng a path for answering the 
riddle of the 3 genera�ons of elementary par�cles [13]. 

Finding Mater 
Observing our varia�onal result (2) and comparing with the classical equa�ons from [3]: 

 1R R g g T
2αβ αβ αβ αβ− ⋅ + Λ ⋅ = −κ ⋅ , (11) 

where we have: Rαβ, Tαβ the Ricci- and the energy momentum tensor, respec�vely, while the 
parameters Λ  and κ  are constants (usually called cosmological and coupling constant, 
respec�vely), we realize that the following terms of (2) are just the most natural energy momentum 
tensor elements, yielding the following iden�ty: 
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Einstein’s Lineariza�on 
Directly applying the results from [1], thereby using the classical lineariza�on of the Einstein Field 
Equa�ons under the assump�on of weak gravita�onal fields and small veloci�es, we obtain the 
following field equa�ons in vacuum: 
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with the gauge condi�on: 

 , 0ν
µνψ = , (15) 

and µνη deno�ng the metric tensor in Minkowski or Cartesian space-�mes. 

The wave solu�on to (13) is given in [1, 13], but as it is not of interest here, we skip this part and 
move directly on to the corresponding quan�zed linearized field equa�ons. 

We remember that we can always extend the metric tensor in accordance with (1) and that then (13) 
can be expanded as follows: 
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because instead of (14), with a scaled metric tensor we have: 
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The Laplace opera�on in (16) can be expanded using the following patern: 
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and is resul�ng in: 
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The expansion is also necessary for the operator itself, whereby it generally holds: 

 

( )

( )

( )

( )

n 1
G n

n 1
2n

2

n n2 1
2 2n ,

2

,2 1

g
,2 1

,
g , , g

1
F g F g

F g
1

g F g
F g

1
g F F g F g g

F g
1 1F g g g
F F g

1 F g 0
F F

F
g 0 F g F 0

F

− αβ
α β

− αβ
α β

− −αβ αβ
α β α β

αβ αβ
α β α β

αβ
α β

α αβ αβ
β α β

∆ Φ = ∂ ⋅ ⋅ ⋅ ⋅∂ Φ
⋅

= ∂ ⋅ ⋅ ⋅∂ Φ
⋅

 =  ⋅ ⋅ ⋅ ⋅∂ Φ + ⋅∂ ⋅ ⋅∂ Φ 
⋅

= ⋅ ⋅ ⋅∂ Φ + ⋅∂ ⋅ ⋅∂ Φ
⋅

∆ Φ
= ⋅ ⋅ ⋅∂ Φ + =

⇒

⋅ ⋅∂ Φ + ∆ Φ = ⇒ ⋅ ⋅Φ + ⋅∆ Φ =

. (20) 

Applying this on (19) yields: 
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which, when compared with the classical equa�on (13), offers a few more op�ons and might account 
for mater without the need to ar�ficially introduce it via the Hilbert mater density or the energy 
momentum tensor. In [13] we have shown that for F=const, we can find classical and for F=f[kσxσ] 
quantum gravity wave solu�ons. 



With respect to the operator expansion (21) it needs to be pointed out that the original Einstein 
lineariza�on starts with local geodesic coordinates on a Cartesian map. So, in principle the Laplace 
operator in (13) should always be considered Cartesian and no expansion of the type (21) would be of 
need. However, as we can apply superposi�on not only to the solu�ons of the equa�on (13), but also 
– due to its linear character –to the equa�on itself, we can effec�vely construct many geometrical 
forms out of the simple cartesian one. Hence, our deriva�on (21). 

An Alterna�ve Path to the “Wave” Solu�ons / An 
Important By-Product 
Expanding the Operator 
So, we already have reproduced the classical equa�on and found addi�onal quantum gravita�onal 
solu�ons to the Einstein-linearized field equa�ons. Nevertheless, we here also want to watch out for 
other solu�ons. Thereby, not being all too happy with the non-linear term in F in our linearized 

quantum gravity field equa�ons in the last line of (21), which is to say: ,
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Equa�on (21) then results in: 
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This means, that for a given weak gravity “tensor” µνψ  we have a linear equa�on in the scalar wave 

func�on Ψ. If of bold character or mood, one may now even conclude that the equa�on in the last 
line of (23) could be interpreted as the equivalent for the classical Klein-Gordon equa�on under the 
assump�on of weak gravita�onal fields and small veloci�es, because within the terms: 
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we might want to recognize something like generalized mass and poten�al. Contrac�on should then 
give us the classical scalar Klein-Gordon equa�on via: 
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Well, indeed, we recognize the main parts of the Klein-Gordon equa�on, but we are anything but 
happy that we s�ll have the term with the first deriva�ves in there. Something is missing – obviously. 

Going back to (21)  and remembering that the complete varia�onal integral with the Einstein-
lineariza�on from above would read (Λ=0):  
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 ∆ 
= − ⋅ ∆ ψ +ψ ⋅ ⋅η ⋅ + + ⋅η ⋅ψ ⋅ δ  

  

 ∆ 
= − ⋅ ∆ ψ +ψ ⋅ ⋅η ⋅ + + ⋅η ⋅ψ ⋅ δ  

  

∫

∫

∫

. (26) 

Now we take into account that in the current – Einstein-lineariza�on - approxima�on the varia�on is 
producing non-constant/variable terms of second order, meaning: 

 [ ]"weak gravity" 2G h
F

µν
µν η

δ → +δε , (27) 

where we – as before – ignore these higher order terms and obtain: 
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→
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= − ⋅ ∆ ψ +ψ ⋅ ⋅η ⋅ + ∆ + ⋅η ⋅ψ ⋅ η    

∫

∫

. (28) 

The last term can be integrated by parts in two different ways: 
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
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∫

∫ ∫

∫ ∫
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

. (29) 

Consequently, the results for the last line of (28) read as follows: 
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,
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F 2 F

F
α αβ

η µν µν β η


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

  ∆ ψ +ψ ⋅ ⋅η ⋅ − ⋅∆   

. (30) 

In order to get rid of the non-linear terms in F we would again need: 

 [ ] F fF C f Cf = ⋅ + . (31) 

for the first equa�on in the last line of (30), leading to: 
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f
f C

1 f 4 0
f C

4 0

µν η η µν

Ψ= +

η µν µν η

⇒

ψ ⋅∆ − ⋅∆ ψ =
+

→
⋅Ψ ⋅∆ ψ +ψ ⋅∆ Ψ =

, (32) 

while the second equa�on requires: 

 [ ] ( )2
F fF C f Cf = ⋅ + . (33) 

and gives us: 
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f
f C

F 2 F' f
f

2 0
f C

2 0

η µν µν η

η
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Ψ= +

η µν µν η

⇒
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+

→
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. (34) 

We realize the two op�ons (31) and (33) to coincide with our own quantum field equa�on 
lineariza�on under “weak gravity” (3) and F sa�sfying (4) with n=10 and n=4, respec�vely. While the 
meaning for 4 is obviously connected with the space-�me on bigger scales, the n=10-op�on is of 
importance with many string and brane theories [14]. Regarding the metric picture, however, the two 
op�ons will merge to one again when finally forming the complete metric tensor (thereby taking into 
account all approxima�ons and simplifica�ons being made along the way). 

Ignoring the Operator Expansion 
Directly using (19) yields: 

 * *
MG MG

1R R G F F 2 G F 0
2

αβ
αβ αβ µν µν α µν β− ⋅ = ⋅∆ ψ +ψ ⋅∆ + ⋅ ⋅∂ ψ ⋅∂ = , (35) 



we would have no non-linear term in F. Hence, we have the following expression under the varia�on 
Hilbert integral: 

 ( )n
MG MG

V

0 d x G F F 2 G F Gαβ µν
µν µν α µν β= − ⋅ ⋅∆ ψ +ψ ⋅∆ + ⋅ ⋅∂ ψ ⋅∂ δ∫ . (36) 

As above, we take into account that in the Einstein-lineariza�on the varia�on is producing non-
constant/variable terms of second order, meaning: 

 [ ]"weak gravity" 2G h
F

µν
µν η

δ → +δε , (37) 

where – as before – we ignore these higher order terms and obtain: 
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∫

∫
. (38) 

The last term can be integrated by parts in two different ways: 
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. (39) 

This �me, as only the first path is of interest to us, the result for the last line of (38) reads as follows: 
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. (40) 

Here now, especially with h containing a whole metric tensor, we recognize the Klein-Gordon 
equa�on with equivalents for mass and poten�al. We can further simplify when expanding the G-
Laplace-operator in the general way: 
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. (41) 

Interested in avoiding the non-linear term in F, we set again: 

 [ ] F fF C f Cf = ⋅ + , (42) 

and obtain: 
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