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Abstract

In this paper we will try to give a metric explanation for the so-called Pauli exclusion principle [A1].
We find that, in curved spaces or space-times, a system, increasing its internal amount of
information, also increases its radius or inner scale.

We are going to consider a variety of examples of different geometries, thereby extracting various
sets of connections between dimensional increase and scale-growth, clearly being a function of
symmetry. Our results show that adding dimensions to a system of curved geometry without changes
of the symmetry of somehow curved character, forces the system to grow also in certain of its scales
(which ones depends on the actual geometry). This behavior can also be interpreted as an exclusion
principle as adding things (in this case dimensions / properties / attributes / degrees of freedom)
forces these additional degrees of freedom into appearances leading to scalar change and thus
additional lengths on certain — geometry-dependent - dimensions. Seeing various states of particles
just as degrees of freedom or dimensional options gives us the connection to the Pauli principle.

In addition to this, we also compare our finding with the Bekenstein-Hawking thought experiment
[A2, A3, A4] where we see dimensional growth also being connected with informational increase [AS5,
A6, A7]. It is this comparison which reminds us of Einstein’s famous conjecture regarding the stupidity
of mankind probably being infinite.

Namely, observing humanity which seems to be running headlong into another major war, one might
assume that so much stupidity, surely has to come with a permanent loss of information and
consequently, should actually cause the universe to shrink (hence our provocative title). We can
therefore only assume—again, not entirely seriously—that there must be other intelligent life in this
universe that contributes to the proliferation of information and, in doing so, compensates for human
stupidity regarding the apparent expansion of the visible interstellar space.
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The Pauli-Principle (Al generated answer)

»The Pauli exclusion principle [1] is a fundamental law of quantum mechanics introduced by Austrian
physicist Wolfgang Pauli, which states that two or more identical fermions cannot simultaneously
occupy the same quantum state inside a quantum system. This principle is crucial in explaining the
structure and stability of matter, including the electronic structure of atoms and molecules.

In the context of atoms, the Pauli principle dictates that no two electrons can have the same set of
four quantum numbers (n, €, mg, and m;). For instance, if two electrons reside in the same orbital,
their spin quantum numbers (m;) must be different, meaning one must have a spin of +1/2 and the
other -1/2. This restriction ensures that electrons do not all collapse into the lowest energy state,
thereby preventing the collapse of matter and contributing to the stability of atoms and molecules.

The principle also plays a significant role in chemical bonding. For example, when two hydrogen
atoms approach each other to form a molecule, the Pauli principle requires that the electrons have
opposite spins to occupy the same orbital, leading to the formation of a stable bond. If the electrons
have parallel spins, the resulting repulsion prevents the formation of a stable molecule.

Additionally, the Pauli principle has broader implications beyond electrons, applying to all fermions
(particles with half-integer spin) such as protons, neutrons, and quarks. It is essential in
understanding phenomena like the stability of white dwarf stars and the behavior of particles in high-
density environments. The principle has been directly observed in experiments involving up to six
particles, further validating its importance in quantum mechanics.”

Pauli and the Space-Time, a Set of Properties Requires

From Wikipedia, the free encyclopedia

A rigorous statement which justifies the exclusion principle is: under the exchange of two identical
particles, the total (many-particle) wave function is antisymmetric for fermions and symmetric for
bosons. This means that if the space and spin coordinates of two identical particles are interchanged,
then the total wave function changes sign (from positive to negative or vice versa) for fermions, but
does not change sign for bosons. So, if hypothetically two fermions were in the same state—for
example, in the same atom in the same orbital with the same spin—then interchanging them would
change nothing and the total wave function would be unchanged. However, the only way a total wave
function can both change sign (which is required for fermions), and also remain unchanged, is that
such the function must be zero everywhere, which means such a state cannot exist. This reasoning
does not apply to bosons because the sign does not change.



We realize that there is no truly rigorous derivation of the exclusion principle, but more or less a
guantum technical construction, backed by observation and empirical finding, leading to the desired
result, which is to say, the exclusion effect. Neither does this tell us how exactly the exclusion works
nor where it comes from nor how EXCACTLY this is all connected with the half spin as the typical
property of fermions, being those particles, which fall under the classical Pauli exclusion principle.

A Cartesian System Decreases in Scale When Dimensionally Growing

The volume of a systems requires the evaluation of the following integral (g denotes the determinant
of the system’s metric):

V:Idnx\/g. (1)

Assuming an extremal principle of the type:
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and inserting cartesian coordinates describing a cube of side-length a, we end up with:
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Deriving the derivative with respect to the number of dimensions n and also assuming a to be
dependent on the dimensionality of the system a=a[n] gives us:
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and the solution:
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We see that with increasing dimension the side length a[n], which we might see as an internal scale,
decreases, while the volume:
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stays constant.

This apparently paradox behavior would give an inhabitant in such a space, who never sees the whole
picture but only a local manifold, the impression that the space around him shrinks, while in total no
volume change would happen.

In the case of C,=0, we’d even obtain a constant side-length or in case of a not being a function of n,
our equation (4), then reading:

%:O:anln[a], (7)

could not produce a meaningful solution... unless we see In[a]=0 with a=1 as such a solution. In other
words, n-cubes (or tesseracts) with side-length a=1 automatically fulfill our equation (4) and deliver
n-extremal cubes.



A Multitude of Tesseracts

Assuming an ensemble of n-cubes with the total volume:
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and the volume-extremal condition:
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we see that, in addition to our simple solution (5), individual for each tesseract, we could also aim for
one global solution with many different ai[nj]. This gives us quite a variety of options. One simple
example would be N=2 with n=n;=n; and the two choices of:
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Both functions lead to a decreasing scale with increasing n.

(10)

The n-Extremal Sphere

In contrast to our finding for the cartesian space above, we now investigate the situation in spherical
coordinates, which is to say, n-spherical coordinates, to be precise, and start with the volume
function for an n-sphere, reading:

V=L-r[n]n. (11)

Derivation with respect to n leads to:
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Here Hn[x] denotes the harmonic number of x and y gives the Euler Gamma constant with
approximately y=0.57722...
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Demanding the volume to be extremal, we now obtain the following differential equation of first
order in the dimensions n for the radius r[n]:

%:Oz(y—Hn [%}+ln[Tc]+2-ln[r[n]]]r[n]+2-n-r'[n], (13)

resulting in the following solution for the radius r[n]:
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Thereby, as before for the Cartesian coordinates, we even have obtained an arbitrary constant C..
Setting this constant zero, we note that for n=0 the radius is not zero as one would perhaps expect or
infinite as we found for the cartesian counterpart, but something finite, namely:
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For illustration we evaluated the radius behavior for a set of C, (figure 2). We find an interesting
surface behavior for the various C, (see figure 1). The corresponding equation reads:
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Fig. 1: Surface for various constants C, in accordance with our radius equation (16) n-(volume)-
extremal spheres.

Brief Consideration of n-Tori

Instead of n-spheres we now want to investigate various n-tori structures in order check out the
effects of the additional degrees of freedom these objects might bring to the game.

As an example we consider an n-torus with two equally-dimensional manifolds but not necessary
equal radii:
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Derivation with respect to n; and n; gives:
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The simplest solution would be as follows:
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But, of course, (18) could also give other solutions.

We also have the option to define more complex dependencies of the various radii to the g manifolds
with the n;j as their corresponding sub-dimensionalities.

We shall investigate the many options resulting from this geometry in some of our upcoming
publications.

The n-Ellipsoid

In the case of n-Ellipsoids, in comparison to the spheres, the result would be a less distinct, because
here the volume is given through:

Ve ™ ]a;- e

With a; denoting the half-axes of the ellipsoid.
We have a variety of options to investigate n-dependencies guaranteeing extremal volumina.

Sphere-like

At first we want to consider the following situation:
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where we assume to have only one axis being different than r[n] with the difference being defined by
a factor 3. The result is equal to the one of our n-spheres above:
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and again results in the following solution for the radius r[n]:
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The following figure 2 shows r[n] in dependency of various constants Cp.
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Fig. 2: Radius for various constants C, in accordance with our radius equation (14) or (25) for n-
(volume)-extremal spheres / sphere-like ellipsoids.

1-Axis Spheroid

Our next object of interest shall be the following:
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Where, as before, we assume to have only one axis being different than r with the difference being
defined by a factor 8, but this time we do not have r[n] but a constant r and [n]. The result reads:
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and gives the following solution for the radius factor 3[n]:
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The figure below (fig. 3) illustrates the property of the factor in dependency on various radii r.
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Fig. 3: Factor B for various radii r in accordance with our equation (29) for n-(volume)-extremal-1-
axis sphere-like ellipsoids.

p-Axis Spheroid

Now we generalize our 1-axis spheroid to p axes being different from r, leading to the following
volume formula:
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Where the difference of the two sorts of axes is defined by a factor f= 3[n]. The result reads:
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and gives the following solution for the radius factor 3[n]:
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Fig. 4: Factor B for various p in accordance with our equation (33) for n-(volume)-extremal-p-axis
sphere-like ellipsoids.

Applications

The Bekenstein-Hawking thought experiment

It was shown in [2] that for spaces of n-spherical symmetry the radius increase with increasing
dimension follows the bit-wise growth of a black hole when always demanding the radius for the n-
sphere to couple at its extremal dimensional condition. This means that the number of dimensions



for the very n-sphere is chosen such that either surface or volume are extremal. The corresponding
radius shows the Bekenstein-Hawking behavior [3, 4]:

rf=2-L-\/7r-(n+,/n-(1+n)). (34)

Here n gives the dimension, while L is just a scaling factor.

While the classical evaluation is given in the appendix of this paper, we here want to point out a small
flaw or inconsistency within the classical derivation and intent to correct it. The basic assumption in
Bekenstein’s experiment is the construction of a bit-like information, thrown into a black hole by
choosing the size of a photon (its wavelength) equal to the Schwarzschild radius. Repeating the
evaluation with an uncertainty to this assumption leads to quite some consequences and will later
become important within this paper. Thereby the derivation of this refined equation is performed as
follows:

At first, following Bekenstein with a slight adjustment, we start with the assumption that the photon’s
right size should be a wavelength A of the Schwarzschild radius rs times an yet unknown parameter L.
Knowing that the energy of the photon would be E=h*v, with denoting v the frequency and h giving
the Planck constant, and plugging in the equation for the Schwarzschild radius of the photon related
mass change Am (with reduced Planck constant 7 and the Newton constant G):
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Now we assume that we construct a whole black hole just bit by bit and that the latter in the end
consists of q bits leading to the identity:

2 4
Q'AA=4'n~rsz=q-(32~n2~%+64-n3~f.‘;2j. (37)

Solving with respect to the Schwarzschild radius measured in units of the Planck length, results in:
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n-Spheres Grow in Dimensionality Just as Black-Holes Grow With Bits

It was already shown in a variety of previous publications [2, 5, 6, 7, 8, 12] that the equation from the
Bekenstein-Hawking though experiment on black holes (38) results in a similar behavior (as least for
bigger q and n) as our dimensional growth of extremal n-spheres (14) (see also figure one, blue curve
for C,=0).



The Relation Between the Bekenstein- and the n-Sphere Picture

Now, we compare the purely classical Schwarzschild geometric result from the Bekenstein-Hawking
thought experiment (38), living in a 4-dimensional space-time and our n-sphere derivation as a multi-
and variable dimensional approach. Again we point out that the two still deliver similar distributions
regarding the dependency of radius and dimension for the extremal n-spheres and Schwarzschild
radius and bits for the classical black holes (e.g. [2, 7, 8, 12]). This may have a deeper meaning [19].

Looking for the “connector” as a simple factor, we divide equation (38) by (14) and square the
guotient, resulting in:

r 2 4-7[2-(q+ q-(1+q))
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This time, the ratio for g=n and g2 is almost 137/u and we wonder why we are so close to the
reciprocal of the so-called Sommerfeld fine structure constant with a=1/137.035999177.

In the limiting case g— o we can even give an accurate solution to the quotient above, reading:
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Assuming, as Bekenstein and Hawking did, that p should not be too different from 1, we ask for a
factorial connection of the two worlds, the one of the extremal n-spheres, n-tori and so on and the
other with smallest information units, bit, namely, in our 4-dimensions of space and time. We find
that 16*e*n=136.636 are already pretty close to those ominous 1/a=137.0... Thus, with a
p=(1-g)*mand an €=0.0029207771434275253 equation (40) would have delivered us exactly 1
over the Sommerfeld fine structure constant a.

With the L so close to m, there is a great motivation to see an entanglement of the two worlds and to
see it in form of Sommerfeld’s constant.

“Derivation” of Sommerfeld’s Constant (from [19])

What Does it Actually Mean to “Catch a Photon”?

One option to explain the meaning of a u different from 1 and thus, different from the Bekenstein
assumption, not connected to the red- or blue-shift of the infalling photons, as discussed in [19],
thereby assuming that the observer is directly at the event horizon and thus, sees the photon’s
wavelength in the moment when it falls into the black hole, could just be associated with the
following geometric consideration:
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Fig. 5: Photon encircling a black hole. The wavelength of the photon is exactly the circumference of
the black hole and consequently does it partially leave it when doing its voyage.

Let us take just one photon and assume that there is nothing in the black hole that could absorb the
photon. Instead, the “poor thing” is just circling around the event horizon as shown in figure 5
(orange line). As the photon has a wavelength and an amplitude, we demand two conditions:

a) The wavelength should not be bigger that the circumference of the black hole so that the
photon can finish one cycle of oscillation when having circled the black hole once. This shall
be the new bit condition.

b) The photon should not be seen anywhere from the outside when doing its circling.

For illustration we show a set of photons not having the right size and thus, partially leaving the black
hole (coming out of the event horizon, c.f. figure 6).
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Fig. 6: 4 Photons with a wavelength equal to the circumference of the event horizon encircling a
black hole. It oscillations (after all the photons are waves) bring them partially outside the black
hole, which should not happen. In order to avoid this, the photons need to be slightly smaller.

The photon with the right size, which we here simplify with an oscillation of type:
P(@)=A-sin(9), (41)
would be one with a wavelength slightly smaller than the circumference of the black hole (figure 7).

In order to obtain the correct wavelength, we need to evaluate the length of the curved photon
which can be given via:

L=K~%T\/1+P'((p)2 -d(pzk-%T\/l+Az-cos2((p)-d(p
0 0
A’ '
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Here the function E[x] denotes the elliptic integral of the second kind. Our definition of the length
guarantees that for A>0, which is associated with a completely flat wave or vanishing oscillation, we
obtain the result of A*m, which is just the circumference of the black hole, because a completely flat
photon does not anywhere stick out of the event horizon.

(42)
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Fig. 7: Two photons encircling a black hole. Now the wavelength of one photon (green) is a little bit
shorter than the circumference of the black hole so that it always stays inside when performing its
circles behind the event horizon. The other photon’s wavelength (orange) is exactly the
circumference of the black hole and consequently it does not always stay inside when doing its
voyage. We assume that this second option should be ruled out by a proper choice of p.

In any other (normal) case, we have to demand p to be:

pemem (43)
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which gives us the amplitude:
A =10.10836541304457664, (44)

and the final formula for the derivation of the fine structure constant as follows:
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Of course, this is not a rigorous, which is to say fully theoretical, derivation of the constant as it
required the empirical calculation of the photon’s amplitude, where, not having any information
about its natural value, we needed to plug in the fine structure constant to make everything fit. If,
however, we would be able to derive also the amplitude in a first principle, rigorous manner, our task
of obtaining Sommerfeld’s constant in a completely analytical way would be complete.

Maybe this will be possible by applying our solution to the photon [26, 27].

“Rigorous” Derivation of Sommerfeld’s Constant

It was shown in [19] that we are able to derive the Sommerfeld constant by assuming a photon-
absorbing dimensionally extremal system. Thereby, the system would not be of perfectly spherically
symmetry, which allows us to apply our result for the n-p-extremal spheroid (33). Evaluation of the
effective (average) radius over the whole volume would be done via:
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This leads us to a simple p=m with the assumption of the circling photon (figures 5 and 6) but without
the need for any discussion about the width of a photon and the constant:

C, =10.9985385435007366. (48)

Please note that this is only one option and it only holds for systems (apparently black holes) where
one dimensions suffices to code one bit. For all other possibilities the reader is referred to [19].

Towards a Geometrical Pauli Exclusion Principle

Every object falling into the system (joining it), thereby increasing the number of its dimensions,
would automatically contribute to the increase of internal scale unless it does change the volume’s
geometry such that its contribution is of non-curved character. To give an example we just need to

explore Cartesian coordinates and imagine an n-cube where the volume would be a" with “a” giving



the side length of the cube. When now adding a bit more degrees of freedom, which is to say more
dimensions An to the system, we might end up with another side length b and a volume b™2", but as
we have learned from our evaluations in sub-section “A Cartesian System Decreases in Scale When
Dimensionally Growing”, there either is a decrease in scale when a=a[n] or there is no extremal
condition which could tell us what the final result would be. In other words, when adding dimensions
to a Cartesian system and keeping the Cartesian character of the whole, the volume stays constant
with the scale parameter a either not changing at all (a=1) or decreasing in correspondence with
equation (5). Everything would still fit into the previous volume and this could be arbitrarily small.

The situation changes in curved coordinates, where the “desire” for an extremal volume (or surface
(?)) leads to an expansion pressure when new degrees of freedom are added to the system.

This can be interpreted as a Pauli exclusion principle, only that so far we have not woven in the
fermionic character of the new dimensions/objects/happenings/particles and so on.

Now, of course, the volume exclusion is not the Pauli exclusions, because the latter does not refer to
volume elements of space, but to quantum states. So, either the dimensions are equivalent to such
states or we have to look out for a different connection.

In order to have a starting point for our discussion, we take our extremal p-axes spheroids from above
(equations (30) to (33)) and consider the cases p=3 (fig. 8) and p=4 (fig. 9). Please note that these
conditions are equivalent to p=n-3 and p=n-4, respectively.

Thereby we assume certain dimensions being special and helping to realize the extremality of the
volume via our B-factor being allocated to these coordinates. In one case, p=3 (fig. 8), we assume
time to be somehow special (c.f. [20]), while in the other we incorporate the time-coordinate into the
set of extraordinary B-dimensions, p=4 (fig. 9). Both cases explain the change of space when
additional dimensions penetrate the system, but only the second case also changes time.
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Fig. 8: Factor B for p=3 and various radii r in accordance with our equation (33) for n-(volume)-
extremal-p-axis sphere-like ellipsoids.
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Fig. 9: Factor B for p=4 and various radii r in accordance with our equation (33) for n-(volume)-
extremal-p-axis sphere-like ellipsoids.

Interestingly, when incorporating time into the B-dimensions, it also shows the same behavior as the
space-like coordinates and we know from special and general relativity that this should not be the
case. The simplest solution to this problem — of course — is to use our own results (e.g. [20 — 24]),
where, in fact, we always obtained time to be something special like “lines of borrowed surfaces” [21,
22], a by-product of cosmological superpositivity [23] or the result of things needing a position in
order to be at all [20, 24]. This — at least momentarily — gives us the possibility to treat time as a
secondary effect, emerging as imaginary dimensions (“square roots of borrowed surfaces”), jittering
positions, evolution of a universal linearity, “cell-wall” evolution or dimensional changes leading to
scaling effects on spatial dimensions, giving us the impression of universal change (when observing or
even living in or on the B-dimensions) and thus, time.

So, for the time being, we ignore time, respectively, we don’t bother with it as a truly independent
dimension(s) (the plural option here stands for the possibility of multiple time-coordinates, which — at
least mathematically, is a possibility), and only consider special spatial dimensions and their behavior
in extremal voluminal spaces (or space-times). Time can then later be brought in again by e.g.
jittering position, whereby the jittering comes from the extremal principle as shown in our previous
publications (e.g. [20, 24]).

So, it is only one thing we would need for now and this is a set of objects or dimensional happenings,
sporting the right geometry in order to account for a special increase when being added to a system.
Observing figure 8 with p=3, we see that slightly non-spherical objects would give us what we need as
their — for a given radius r and from a certain dimensional number n onwards — dimensional growth
requires also the growing of the scale parameter 3, which from inside the system would be observed
as growth for 3 of the many dimensions. One such object, we only very recently discussed, clearly
sports a half-spin property and therefore is a fermion in the classical sense [25]. But what is more, we
can properly illustrate its space-time field (figures 10 — 12).



Fig. 10: Density distribution of the field of a “harmonic spherical half-spin object” as presented in
[25].



Fig. 11: Density distribution of the field of a “harmonic spherical half-spin object” as presented in
[25].



Fig. 12: Density distribution of the field of a “harmonic spherical half-spin object” as presented in
[25].

Conclusions

We found a dimensional exclusion principle, which is based on the condition of n-extremal volumina
(n... number of dimensions of a system). This exclusion could be interpreted as the geometrical /
metrical or quantum gravitational reason for the Pauli exclusion principle of half-spin objects.

We might even say that the whole universal expansion is just fermionic dimensional growth requiring
the B-dimensions, being our big ordinary global dimensions, to expand with their scaling parameter

B.



As a by-product, we have also derived the fine structure constant a=1/137.035999177 as connector
between the current model of science, seeing reality of something inside a 4-dimensional space-time
and a multi-dimensional concept with also the dimensionality itself being subjected to a general
variational, extremal principle [19].

Thereby we applied the Bekenstein-Hawking thought experiment, where photons are swallowed by
black holes in a bit-wise manner, in two ways:

a) The classical picture, just as Bekenstein and Hawking did
b) As dimensionally extremal spheres or spheroids.

and derived «a as a ratio of the two descriptions of the same process.

With this we were able to give the fine structure constant as a number consisting of natural
mathematical constants in the following form:

1 _16-7r2 167w

= e=
2 2
o =n-C C.

e. (49)

Appendix: About the Dimensional Size of Systems

In classical systems science there is no way to derive the necessary dimension of a system in a truly
fundamental and neutral (mathematically based) manner. Thus, systems are often “defined” as it
pleases the creator of the simulation or as there are restrictions in ability and calculation power for
the “digital twin” of the natural system one intends to model. As this holds for any system, this is also
true — of course — for the unconscious or conscious mind and thus, of great interest here.

We start with the conjecture that not just the system’s inner properties and corresponding governing
equations but also the system’s size (number of degrees of freedom or dimensions) can be derived
from a suitable minimum principle. Our starting point shall this time be the Einstein-Hilbert action

with a generalized Lagrange density function @, [R] and a yet undefined variation, which we write

as follows:
8,W=0=3,[d"x(y-g @ [R]). (50)

Please note that we could also write this for a scaled metric tensor as elaborated in the previous
appendices in order to work out the connection to quantum theory, respectively, in order to make it
show itself directly via a set of wrapping and wave functions Fi[fi] and f; within the usual variational
calculus.

In order to adjust undefined parameters and finalize the character of the variational task (58), we
intend to consider a fundamental problem and here determine the size of a black hole in a
completely new way. Classically the size of a black hole is given by the Schwarzschild radius, which
2-m-G
c2
speed of light in vacuum). This Schwarzschild radius, however, was never derived from a first
principle, but was adjusted as a parameter to the Schwarzschild metric [14] in order to give the

correct limit to the Newton gravitational law.

itself is determined by the mass m of the black hole via: r, = (G... Newton'’s constant, c...

Here now we want to derive the Schwarzschild radius via a suitable version of (58). In order to do so,
we first need to repeat Bekenstein’s thought experiment of black holes.



The Bekenstein Bit-Problem

One of the most famous and equally puzzling problems in General Theory of Relativity is the
Bekenstein-Bit problem, where it was found that black holes can store information, but so far it is
been seen as a mystery how these objects actually do this. In [2, 7, 8] we have shown that bit-like
information is been stored as dimensions and that each bit becomes one dimension. For convenience
we are here repeating parts of the original evaluation.

In the early seventies J. Bekenstein [3, 4] investigated the connection between black hole surface area
and information. Thereby he simply considered the surfaces change of a black hole which would be
hit by a photon just of the same size as the black hole. His idea was that with such a geometric
constellation the outcome of the experiment would just consist of the information whether the
photon fell into the black hole or whether it did not. Thus, it would be a 1-bit information. His
calculations led him to the funny proportionality of area and information. He found that the number
of bits, coded by a certain black hole, is proportional to the surface area of this very black hole if

measured in Planck area ﬁ, . In fact, the dependency how one bit of information changes the area of
the black hole (AA) reads:

4
AA=32-n2-£i+64-n3-f—§. (51

S

Thereby the derivation of this equation is performed as follows. At first we start with the assumption
that the photon’s right size should be a wavelength A of the Schwarzschild radius rs. Knowing that the
energy of the photon would be E=h*v, with denoting v the frequency and h giving the Planck
constant, and plugging in the equation for Schwarzschild radius of the photon related mass change
Am (with reduced Planck constant # and the Newton constant G):

Ar -ct . .
EC _am-¢? = [E=h]»=C-Re
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we can derive AA as follows:

AA =47t((ArS +1,) —rsz) =4rc(2ArS T, +(Ars)2)
74 (53)
=32-n" L} +64-7° L
r
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Ignoring the extremely small second term in the last line, one could just assume our black hole to be
constructed of many such bit surface pieces. Thus, we could write:

q-AA=q-32-%-A=4.n1r’ = rr=q-8x-F, (54)

where r, gives the radius of the black hole. We see that our black hole radius is proportional to the
square root of the bits g thrown into it.

Now we want to compare the dependency rs[q] with the radii rmax[N] resulting in maximum volume of
n-spheres for a certain number of space-time dimensions N=n+1.



rmax[N] and r;[q] for a variety of N=n+1 and q

rmax&rs
-«
el -
1.5 J,/r’
r/‘/
1.0
0.5
/
q=n+1
5 10 15 20

Fig. Al: Radius rmax for which at a certain number of dimensions the n-sphere has maximum volume

in dependency on N=n+1 compared with the increase of the Schwarzschild radius r; of a black hole

in dependence on the number of bits g thrown into it. We find that g=N=n+1. As examples we pick

the situation with a radius slightly bigger than 1.5 (whatever unit). We obtain maximum volume for

a sphere in 15 dimensions (orange dotted line). Picking a radius slightly below 1, however, gives us
a 6-dimensional sphere which can have maximum volume at such a size (green dotted line).

We find a perfect fit (s. figure Al) to the rmax[N]-dependency for g=N with the following function:

r,=U-(0.014948+0.3951244-[q); U*=8-7-¢2, (55)
where U denotes a unit-factor which was set U=1 in figure A1l.

Our finding does not only connect the intrinsic dimension of a black hole with its mass respectively its
surface, but also, at least partially, gives an explanation to the hitherto unsolved problem of “what
are the micro states of a black hole giving it temperature and allowing it to store information”.
According to the evaluation in this section, these microstates are just various states of dimensions
realized within the black hole in dependence on the number of bits it contains (and thus, its mass).
The bigger the number of bits, the higher the intrinsic dimensions the black hole has. In fact, the
connection even is a direct one and only seems to deviate from the simple direct proportionality for
very low numbers of masses?, respectively Schwarzschild radii rs, respectively numbers of bits g the
black hole has swallowed.

This finding also gives us a direct connection between a principle mathematical law (the maximum
volume as function of the dimension for a given radius of an n-sphere) to the number of bits a black

1 Besides, this deviation is also suggested by the Bekenstein finding summed up in equation (339), where we
could assume the second term to become of importance at lower numbers of rs.



hole contains, to the mass or Schwarzschild radius of this very black hole and the number and
character of microstates the black hole actually uses to internally code the bits.

It has to be pointed out that the expression “intrinsic dimension” truly stands for the part of space for
r<rs, which is to say, the space behind the event horizon. As for the outside, the solution of a
Schwarzschild object in n+1-dimensional space-times is given via:

—’-f[r] 0 0 0 - 0
1
0 — 0 0 0
fr]
O 0 0 0
0 0 0 r’-sing,
. .0
0 0 0 0 0 g
a—2
gy, =1 -sin’ @, -sin*@,; g, =r"-[[sin’¢; a=N-1=n; (56)
i=1
rSN—3 I_Sn—2
flr]=1- N3 =1- 2

As we find that the Newton laws of gravity, however, require N=4, it has to be assumed that in a
region near the event horizon the dimension of the black hole decreases to the known 4 dimensions
so that Newton’s laws of gravity are properly mirrored to us (as outside observers). The
corresponding derivation was given in [8] (chapter 11).

A System-Immanent Scale

Note: the correct solution for the evaluation of the Schwarzschild radius rs as function of the bits
thrown into a black hole object (if using the results from [15]) would be:

rs:2-fp-\/n-(q+,/q-(l+q))! (57)

We find a perfect fit to the n-spheres with maximized volume to a given radius (dots in figure A1) with
a Planck length of ¢, =0.07881256452824544 (s. figure A2, which is almost perfectly equal to the

fit in figure Al).




rmax[N] and r;[q] for a variety of N=n+1 and q
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Fig. A2 (Please note that we have applied a slightly different fit than it was applied in fig. Al):
Radius rmax for which at a certain number of dimensions the n-sphere has maximum volume in
dependence on N=n+1 compared with the increase of the Schwarzschild radius r; of a black hole in
dependence on the number of bits g thrown into it by using (65). We find that g=N=n+1.

But what would be the unit for this Planck length?

Well, it was already shown in [8] that by using the results from [15] and the “volume integral” (58)
with:

5,W=0=35,[d"x|-g, (58)
v
for n-spheres (in [15] with T[n]=1):
(n)
2
VNZVMI:T[H]'ﬁ'Vna (59)
r ==/

we have evaluated the very dimension n to which at a given radius rs the volume of a n-sphere has a
maximum. The rs are put into the calculation as plain “natural” numbers, meaning an rs=1is just a 1
and that is it. We might name this unit a “mathematical meter” or just “mams” (plural for
“mathematical meters”). Transformation to our usual units, like meters, requires the introduction of a
factor T[n]=U".

[£e], e 1.616255(18)x107* meters
©0.07881256452824544

With U = , for instance, we can easily change to our
[ I)]inimams
meters. Nevertheless it appears somehow astonishing that there seems to exist a fundamental

“natural” unit, being completely based on a mathematical - geometrical - extremal principle (the



maximum volume of n-spheres as functions of their dimensions for certain radii). It is also interesting
that these dimensions are so nicely correlated to the number of bits a black hole has swallowed. In
fact, using the unit of mams, the number of spatial (n-sphere) dimensions is perfectly equal to the
number of swallowed bits.

Thus, in the case that black holes would in fact store their content as dimensions and the Einstein-
Hilbert-Action being extended with respect to the number of dimensions in addition to the metric,
we immediately also get an absolute scale for our black hole system in which the number 1 is “made
out” of 12.6883 Planck length and where a 3-sphere has a radius of 0.6969979737167096 mam:s.

Back to the Optimum Size Question for any System

When observing the integral in (58), we see that — in principle — we seek for a maximum volume for a
given dimension or, taking the radius of a Schwarzschild object, look for the corresponding dimension
making the volume integral an extremum. As the determinant g of the Schwarzschild metric is just
equal to the one of a n-sphere with the additional time-dimension to be integrated, we can easily use
the volume integral result of n-spheres, which reads:

(n

2

Vo=V, =" " (60)
N n+l {(n+2):|
o

Please note that due to the time-coordinate t we have V.1 instead of V.. Thereby the integration via t
in (68) is assumed to be performed such that it would give 1. In general, we might take care about
this part of the integration via a proportional constant T we could even consider to be n-dependent
T[n] and thus, equation (67):

Nabl

_un (n)
—— 2
T

= B 61
T[n] r[(nzz)} (61)

Now we evaluate the various dimensions for which, for a given radius r of the n-sphere, we would
obtain extrema. The results were already given in figures Al and A2. There we have illustrated the
resulting rmax as functions of the dimensions N=n+1 (note: n=n-sphere dimension, N=t+n-sphere
dimension).

Now we just compare our findings with the original question of extracting a minimum principle for
the dimensional size of a given system with our generalized starting point for the variational task (58)
and conclude that:

O,W=0= S?J‘dnx(«/—g Dy [R])
\%
=5,W=0=35,[d"x(J-g-[®, [R1=1]) =5, [d"x|-¢
v A%
Thus, the determination of the optimum size of a system we intend to consider, investigate or analyze

can just be found by a dimensional variation of the volume integral of that very system. In the case of
spherical symmetries, this then leads to equations of the form:

(62)



=8,W=0=5,[d"x(J-g-[®, [R]=1])=5,TIn]- s (63)

Along the way we also can extract suitable fundamental scales for our system.

The First Bit Requires the Highest Mass = The First Thought is the Most Difficult

From (65) we can now extract the minimum Schwarzschild radius for the storage of one bit, which
would be equal to 5.508 Planck length and corresponds to 11.16 times the Planck mass. This is a huge
amount of mass and thus, also energy, one needs to safely store just one single bit. Luckily, the
situation improves the more bits one intends to store, as for instance the one millionth bit only
requires about 5.5*1073 Planck masses. Please note that, of course, one might also store bits within
spin arrangements of electrons. Then a 1-bit information would be connected with a single electron,
whose mass and spin energy is many magnitudes below the Planck mass. This spin storage, however,
cannot be seen as a storage of a classical binary bit, because in fact it resembles a quantum bit.
Apparently, the safe storage of a pure and truly binary information requires an - almost - macroscopic
massive structure. Here the black hole probably provides the smallest possible mass ensemble there
can be to arrange such a storage for a certain bit. The limit is given at about 11 times the Planck mass.
Only from this mass onward black holes can store binary information... at least until the Hawking
radiation leads to a destruction of our black hole 1-bit storage system.

And what would then happen to the stored information? Well, this brings us to the question how safe
is information within our universe [16].

Byproducts: A few Fundamental Questions

About the Relativity of System-Scales

We saw that — similar to the Bekenstein or Bekenstein-Hawking problem (see reference [17]) — we
add bits via dimensions to our metric structure (here a black hole). Assuming our metric system to be
a black hole (which we here only use to have a simple as possible math), we can even obtain a ratio of

the black hole’s radius rs to the smallest structure this black hole can resolve. Taking the result for 7, -

the Planck length - from the Bekenstein thought experiment, we find the ratio between the
Schwarzschild radius rs of a black hole and /7, :

2—3:2-\/n-(q+m). (64)

In our universe the Planck length 7, is considered to be the smallest length possible to resolve. What

if the ratio (72), we found for black holes, actually is a more fundamental law? At any rate, it appears
logic to assume that more bits could be coded or stored by an object of bigger size and smaller
internal structure, thereby leaving more options to describe something with these structures. Thus,
the equation (72) makes intuitive sense, but could it also be just the other way round? Could it be
that to an object of given size the number of bits (being equivalent to its dimensions as we see in
figures A1, A2) it contains, determines the smallest scale — the Planck length — of the object, too?
And, if referring to the “Mathematical Psychology”, the system presents a thinking entity, does this
also mean that thoughts have a physical scale?

From inside and taking the Planck length as measure, the increase of information to this very object,
subject or entity would look like an increase of its size. Now assuming the inside of the black hole to



be a general system, the inhabitants of this system may see this system as their very own universe
and would register the increase of information as a growth of their “universe”, measured in the
Planck length of that very system-universe. When learning, we seem to feel the increase of mind.
May be this perception is just what is actually really going on.

Does More Information Always Mean More Mass?

Quantum computer scientists have already pointed out that, with our current way of storing
information, we will one day reach a limit with respect to the number of atoms we can apply for the
storing process and the energy being needed to keep the information stable (maintained). Citing from
the abstract of [18], we have the following situation:

“Currently, we produce ~10?* digital bits of information annually on Earth. Assuming a 20% annual
growth rate, we estimate that after ~350 years from now, the number of bits produced will exceed
the number of all atoms on Earth, ~10°°. After ~300 years, the power required to sustain this digital
production will exceed 18.5 x 10%> W, i.e., the total planetary power consumption today, and after
~500 years from now, the digital content will account for more than half Earth’s mass, according to
the mass-energy—information equivalence principle. Besides the existing global challenges such as
climate, environment, population, food, health, energy, and security, our estimates point to another
singular event for our planet, called information catastrophe.”

It has to be pointed out that when looking for possible inner Schwarzschild solutions [12], we also
found that there are solutions, where the mass decreases with the increase of the object size. It may
well be that such strange states are not only realized in black holes, but could perhaps also help to
overcome our future information storage problem.

Generalization to Spheres?
In the sub-sections above we saw that, when taking the equation for the Laplace length /, from the

Bekenstein thought experiment [3, 4]), we find the following ratio between r; (Schwarzschild radius of
a black hole) and /7, (c.f. equation (72)):

i:z.Jn.(q+m). (65)

Most interestingly, we also found that the solution to the extremal volume problem for a fixed radius
rs for n-spheres results in the same dependency when variating with respect to the number of
dimensions of those n-spheres. We obtain (see dots in figures A1 and A2) excellent fits, when
applying an approach like:

rsz-\/n-(n+,/n-(l+n)). (66)

Thereby we have the characteristic (system-dependent) length scale L.

This automatically gives us a connection between the size-parameter r; of any system of spherical
symmetry and its theoretical capability to store information. A perfect mathematical n-sphere
thereby follows the rule (74) almost perfectly, while other systems may do so only from certain
critical sizes onwards, but, nevertheless, we think we can draw the conclusion that the information
storage capacity of given systems — if showing enough spherical symmetry — can be extracted from
(74). Then the structural size-parameter r; determines the number of storable bits n in dependence
on the system-immanent length parameter L.



From this, one even may deduce that r; and L could be substituted by other system characteristics.
While in (74) their dimension is length, we should not exclude mass, time, charges, energies and so
on.

Other Geometries

The simplest generalization of (70) can be given for an ensemble of N tori of dimensions n; for the
sub-nj-spheres of the individual torus. The volume integral would then yield:
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This could be further generalized for a sum of tori and leaves us with a great variety of pure volume
(radii) and dimension variations.

As tori can be seen as combined nj-spheres with n; giving the dimension of the sub-spheres
constructing each torus (70) can be generalized as follows when assuming N tori with dimensions n;
and sub-spheres of dimensions nj:

W:;Wi:;;[dnlx( ) IZJU T[nu]'ﬁ‘(”u)nn : (68)
1 | R
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Assuming that also complex symmetries of systems could be constructed out of sums of tori, we
realize that the variational options are manifold:

()
W =0= S(HIJ,I.U)i]jT[nU:I.L'(r}j)nﬂ (69)
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and leave us with a great variety of options for an optimum sized system in the case of complex
symmetries.

Consequences from the Bekenstein Thought Experiment Regarding the

Solutions to the Quantum-Einstein-Field-Equations

In [2, 8] we have shown that the classical n-dimensional Schwarzschild solution could be applied to
construct internally structured n-dimensionally black holes, while outside we still have the usual 4-
dimensional solution from [14] with the classical Schwarzschild metric. This, however, would not
explain how the black hole can code any information.

With the help of the new metric solutions evaluated in [12], namely, to just give an example, in the
three-dimensional case with coordinates t, r and an angle:

=C. -f[+1*- 2
gy =Cf[t]":| 0 t 0 (70)



(please note that r has become an angle while t took over the position of the radius),

- 0 0
g, =Cf[t]':| 0 p? 0 .
0 0 p*-sin(r) (71)
flt]=e > -C,

(this represents a shell-like object) we want to solve also this problem. A generalization of this type
solution is been given in appendix N of [2]. Thereby, we found that the Schwarzschild singularity
could be avoided (fig. A3).

Fig. A3: “From the classical Schwarzschild solution to a Quantum Black Hole” [12]

At first, however, we should note that also the n-dimensional Schwarzschild solutions from [8],
section 3.8 (c.f. solution (64) in here) would provide plenty of options to code information, because
there are enough degrees of freedom regarding the thicknesses of the individual x-dimensional layers
of the onion-like Schwarzschild object, which was proposed there (see also [12]). Similar assumptions
could be made for the Robertson-Walker approach introduced in [12], but apart from again
mentioning the onion-layer structured ogre-mind from the movie Schreck, we will not further
consider these possibilities in here.



In the case of photonic inner solutions as also suggested in [12] one might assume some kind of
standing waves inside the black hole, but as we currently don’t have the math to realize such
structures, we postpone the investigation of this possibility.

Thus, we here concentrate on solutions (78), (79) as potential inner solutions to a black hole. As we
see that the parameter p clearly is a length, we want to derive its properties. For the general case this
was already done in appendix N. Nevertheless, we repeat it here for the setting (78) and (79). From
basic quantum theory we know that a particle at rest has the time dependency:

2
. m-c
+i- -t

fld=c " -C, (72)

with m giving the rest mass of the particle and 7 denoting the reduced Planck constant. Comparing
with the f[t]-function from the metric solution (79), we find:

m-c 1
—_—= (73)
h 2-p
. . . 2-m-G ) > .
Inserting the Schwarzschild radius 7, = ———— (G... Newton’s constant, c... speed of light in
c
vacuum), thereby substituting the rest mass m, leaves us with:
3 -1 2
I.-C 1 1 3 l
s - = op=—| S| =2 (74)
2-h-G  2-p r, \4-G I,
Here 7, denotes the Planck length. By inserting (72) into (82) we obtain:
0 Ik l
p=— - = - (75)

r =2.gp.¢r.(q+m) 2'\/”'(‘”m)'

Thus, while for a black hole the number of bits thrown into it leads to an almost perfectly square-
root-like increase of the Schwarzschild radius in accordance with equation (72), the p-parameter of
the (79)-objects decreases with the number of bits. (79)-objects would have the same p-parameter,
which we may see as a size, as a black hole only for Schwarzschild radii rs equal to the Planck length.
In other words, for growing black holes with radii bigger than the Planck length the corresponding
equally heavy (79)-objects would be significantly smaller than the black holes.

So, we ask: Could the (79)-objects be used as building blocks for the black holes, residing inside it,
which is to say behind the event horizon?

Assuming that the black hole’s surface is made out of metric spherical objects of the type (79) and
further assuming that each of these objects in the surface of the black hole, which is to say at r=r;
(which also happens to be the event horizon), requires its own surface space of something like C,*p?,
we can directly evaluate the number of such (79)-objects, we from now on name p-spheres, are
residing inside the event horizon with increasing numbers of bits thrown into the black hole.
Assuming that the mass is always additive, the total mass m of the black hole must then be
distributed among the N p-spheres, which changes (82) to:

.ol 1 1 3 \7! 2 2
¢ _ — N.p=—- ¢ =€_P = p= & . (76)
2:-h-G  2-N-p T, N-r




Also having to satisfy the following equation for the N p-spheres sitting on the surface, we have to
solve the following equation:

2 2
N.Cp.p :4-7[.1‘5
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We realize, that such a structure could not be used to store any information, because the number of
p-spheres should have to increase with the number of bits and not decrease as it does. Things are
improving the moment we allow a combination of p-spheres and (78)-objects (the latter we shall call

t-spheres) to make up our inner black hole. We propose the following (simplest of the many
possibilities) structure:

A) In the center of the black hole sits a p-spheres of “radius-parameter” p given in (82) and thus,
2

p= —P which is to say, the bigger the Schwarzschild radius rs of the black hole, the smaller
I

its core. In fact, for infinite masses the core would become a singularity.

B) This single p-sphere core is surrounded by t-spheres (78) and the number of those t-spheres,
which a black hole can bind, is proportional to the number of bits the black hole has
swallowed.

C) Taking the Bekenstein-condition, this demands an average size for the t-spheres, being bound
by the black hole or the black hole’s surface, to be such that its projected surface would be

equal to Ei . In other words, we could assume the average radius of the t-spheres (the ones

bound to the black hole) to be equal to 7, IN7.

With such a structure, it is very well possible that in fact black holes have no singularity and follow
our scheme of inner-outer-solution, but one cannot detect any difference to the classical

Schwarzschild solution from the outside, because the inner-parts are always hidden behind the event
horizon.

But does this help us to solve the Bekenstein information problem?

Yes, it does.

We can imagine many t-sphere objects (of number N=q) sitting on the surface of the black hole. As
the generalized solution to (78) would read:

—c’ 0 0
g, =C -f[t]'| 0 A?-¢ 0
0 B?-t*-sin(r)’ )’ (78)

0
F[1]=Vt A -C,

we see that each t-sphere could not only store information via a certain sign within the exponent, but
also via the free parameter B.



The Size of the Electron?

Applying (84) and assuming a p-sphere-structure for the electron, gives us:

rs C3 = 1 = Np:l 03 71:&
2-7-G  2-N-p ., \h-G I, (79)
b= p _1.93x107"

N1,

= meter

Setting N=1 we would end up with a p-sphere of p=1.93x 10" meter for the “pure” or “naked”
electron.
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