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Abstract 
In this paper we will try to give a metric explana�on for the so-called Pauli exclusion principle [A1]. 
We find that, in curved spaces or space-�mes, a system, increasing its internal amount of 
informa�on, also increases its radius or inner scale. 

We are going to consider a variety of examples of different geometries, thereby extrac�ng various 
sets of connec�ons between dimensional increase and scale-growth, clearly being a func�on of 
symmetry. Our results show that adding dimensions to a system of curved geometry without changes 
of the symmetry of somehow curved character, forces the system to grow also in certain of its scales 
(which ones depends on the actual geometry). This behavior can also be interpreted as an exclusion 
principle as adding things (in this case dimensions / proper�es / atributes / degrees of freedom) 
forces these addi�onal degrees of freedom into appearances leading to scalar change and thus 
addi�onal lengths on certain – geometry-dependent - dimensions. Seeing various states of par�cles 
just as degrees of freedom or dimensional op�ons gives us the connec�on to the Pauli principle. 

In addi�on to this, we also compare our finding with the Bekenstein-Hawking thought experiment 
[A2, A3, A4] where we see dimensional growth also being connected with informa�onal increase [A5, 
A6, A7]. It is this comparison which reminds us of Einstein’s famous conjecture regarding the stupidity 
of mankind probably being infinite. 

Namely, observing humanity which seems to be running headlong into another major war, one might 
assume that so much stupidity, surely has to come with a permanent loss of information and 
consequently, should actually cause the universe to shrink (hence our provocative title). We can 
therefore only assume—again, not entirely seriously—that there must be other intelligent life in this 
universe that contributes to the proliferation of information and, in doing so, compensates for human 
stupidity regarding the apparent expansion of the visible interstellar space. 
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The Pauli-Principle (AI generated answer) 
„The Pauli exclusion principle [1] is a fundamental law of quantum mechanics introduced by Austrian 
physicist Wolfgang Pauli, which states that two or more iden�cal fermions cannot simultaneously 
occupy the same quantum state inside a quantum system. This principle is crucial in explaining the 
structure and stability of mater, including the electronic structure of atoms and molecules. 

In the context of atoms, the Pauli principle dictates that no two electrons can have the same set of 
four quantum numbers (n, ℓ, mℓ, and ms). For instance, if two electrons reside in the same orbital, 
their spin quantum numbers (ms) must be different, meaning one must have a spin of +1/2 and the 
other -1/2. This restric�on ensures that electrons do not all collapse into the lowest energy state, 
thereby preven�ng the collapse of mater and contribu�ng to the stability of atoms and molecules. 

The principle also plays a significant role in chemical bonding. For example, when two hydrogen 
atoms approach each other to form a molecule, the Pauli principle requires that the electrons have 
opposite spins to occupy the same orbital, leading to the forma�on of a stable bond. If the electrons 
have parallel spins, the resul�ng repulsion prevents the forma�on of a stable molecule. 

Addi�onally, the Pauli principle has broader implica�ons beyond electrons, applying to all fermions 
(par�cles with half-integer spin) such as protons, neutrons, and quarks. It is essen�al in 
understanding phenomena like the stability of white dwarf stars and the behavior of par�cles in high-
density environments. The principle has been directly observed in experiments involving up to six 
par�cles, further valida�ng its importance in quantum mechanics.“ 

 

Pauli and the Space-Time, a Set of Proper�es Requires 
From Wikipedia, the free encyclopedia 

A rigorous statement which justifies the exclusion principle is: under the exchange of two identical 
particles, the total (many-particle) wave function is antisymmetric for fermions and symmetric for 
bosons. This means that if the space and spin coordinates of two identical particles are interchanged, 
then the total wave function changes sign (from positive to negative or vice versa) for fermions, but 
does not change sign for bosons. So, if hypothetically two fermions were in the same state—for 
example, in the same atom in the same orbital with the same spin—then interchanging them would 
change nothing and the total wave function would be unchanged. However, the only way a total wave 
function can both change sign (which is required for fermions), and also remain unchanged, is that 
such the function must be zero everywhere, which means such a state cannot exist. This reasoning 
does not apply to bosons because the sign does not change. 

 



 

We realize that there is no truly rigorous deriva�on of the exclusion principle, but more or less a 
quantum technical construc�on, backed by observa�on and empirical finding, leading to the desired 
result, which is to say, the exclusion effect. Neither does this tell us how exactly the exclusion works 
nor where it comes from nor how EXCACTLY this is all connected with the half spin as the typical 
property of fermions, being those par�cles, which fall under the classical Pauli exclusion principle. 

A Cartesian System Decreases in Scale When Dimensionally Growing 
The volume of a systems requires the evalua�on of the following integral (g denotes the determinant 
of the system’s metric): 
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Assuming an extremal principle of the type: 

 n
n n

V

W 0 d x gδ = = δ −∫ , (2) 

and inser�ng cartesian coordinates describing a cube of side-length a, we end up with: 
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Deriving the deriva�ve with respect to the number of dimensions n and also assuming a to be 
dependent on the dimensionality of the system a=a[n] gives us: 
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and the solu�on: 
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We see that with increasing dimension the side length a[n], which we might see as an internal scale, 
decreases, while the volume: 
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stays constant. 

This apparently paradox behavior would give an inhabitant in such a space, who never sees the whole 
picture but only a local manifold, the impression that the space around him shrinks, while in total no 
volume change would happen. 

In the case of Cn=0, we’d even obtain a constant side-length or in case of a not being a func�on of n, 
our equa�on (4), then reading: 
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could not produce a meaningful solu�on… unless we see ln[a]=0 with a=1 as such a solu�on. In other 
words, n-cubes (or tesseracts) with side-length a=1 automa�cally fulfill our equa�on (4) and deliver 
n-extremal cubes. 



 

A Mul�tude of Tesseracts 
Assuming an ensemble of n-cubes with the total volume: 
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and the volume-extremal condi�on: 
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we see that, in addi�on to our simple solu�on (5), individual for each tesseract, we could also aim for 
one global solu�on with many different ai[ni]. This gives us quite a variety of op�ons. One simple 
example would be N=2 with n=n1=n2 and the two choices of: 
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Both func�ons lead to a decreasing scale with increasing n. 

The n-Extremal Sphere 
In contrast to our finding for the cartesian space above, we now inves�gate the situa�on in spherical 
coordinates, which is to say, n-spherical coordinates, to be precise, and start with the volume 
func�on for an n-sphere, reading: 
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Deriva�on with respect to n leads to: 
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Here Hn[x] denotes the harmonic number of x and γ gives the Euler Gamma constant with 
approximately γ=0.57722… 

Demanding the volume to be extremal, we now obtain the following differen�al equa�on of first 
order in the dimensions n for the radius r[n]: 
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resul�ng in the following solu�on for the radius r[n]: 
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Thereby, as before for the Cartesian coordinates, we even have obtained an arbitrary constant Cn. 
Se�ng this constant zero, we note that for n=0 the radius is not zero as one would perhaps expect or 
infinite as we found for the cartesian counterpart, but something finite, namely: 
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For illustra�on we evaluated the radius behavior for a set of Cn (figure 2). We find an interes�ng 
surface behavior for the various Cn (see figure 1). The corresponding equa�on reads: 
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Fig. 1: Surface for various constants Cn in accordance with our radius equa�on (16) n-(volume)-
extremal spheres. 

Brief Considera�on of n-Tori 
Instead of n-spheres we now want to inves�gate various n-tori structures in order check out the 
effects of the addi�onal degrees of freedom these objects might bring to the game. 

As an example we consider an n-torus with two equally-dimensional manifolds but not necessary 
equal radii: 
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Deriva�on with respect to n1 and n2 gives: 
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The simplest solu�on would be as follows: 
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resul�ng in: 
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But, of course, (18) could also give other solu�ons. 

We also have the op�on to define more complex dependencies of the various radii to the q manifolds 
with the nj as their corresponding sub-dimensionali�es. 

We shall inves�gate the many op�ons resul�ng from this geometry in some of our upcoming 
publica�ons. 

The n-Ellipsoid 
In the case of n-Ellipsoids, in comparison to the spheres, the result would be a less dis�nct, because 
here the volume is given through: 
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With aj deno�ng the half-axes of the ellipsoid. 

We have a variety of op�ons to inves�gate n-dependencies guaranteeing extremal volumina.  

Sphere-like 
At first we want to consider the following situa�on: 
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where we assume to have only one axis being different than r[n] with the difference being defined by 
a factor β. The result is equal to the one of our n-spheres above: 
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and again results in the following solu�on for the radius r[n]: 
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The following figure 2 shows r[n] in dependency of various constants Cn. 

 

Fig. 2: Radius for various constants Cn in accordance with our radius equa�on (14) or (25) for n-
(volume)-extremal spheres / sphere-like ellipsoids. 

1-Axis Spheroid 
Our next object of interest shall be the following: 
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Where, as before, we assume to have only one axis being different than r with the difference being 
defined by a factor β, but this �me we do not have r[n] but a constant r and β[n]. The result reads: 
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and gives the following solu�on for the radius factor β[n]: 

 [ ] n

n 2

n 1
2r

n
C n

π

 β ⋅Γ +⋅
= 

. (29) 

The figure below (fig. 3) illustrates the property of the factor in dependency on various radii r. 

 

Fig. 3: Factor 𝛃𝛃 for various radii r in accordance with our equa�on (29) for n-(volume)-extremal-1-
axis sphere-like ellipsoids. 

 

p-Axis Spheroid 
Now we generalize our 1-axis spheroid to p axes being different from r, leading to the following 
volume formula: 
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Where the difference of the two sorts of axes is defined by a factor β= β[n]. The result reads: 
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and gives the following solu�on for the radius factor β[n]: 
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Fig. 4: Factor 𝛃𝛃 for various p in accordance with our equa�on (33) for n-(volume)-extremal-p-axis 
sphere-like ellipsoids. 

Applica�ons 

The Bekenstein-Hawking thought experiment 
It was shown in [2] that for spaces of n-spherical symmetry the radius increase with increasing 
dimension follows the bit-wise growth of a black hole when always demanding the radius for the n-
sphere to couple at its extremal dimensional condi�on. This means that the number of dimensions 



 

for the very n-sphere is chosen such that either surface or volume are extremal. The corresponding 
radius shows the Bekenstein-Hawking behavior [3, 4]: 

 ( )( )fr 2 L n n 1 nπ= ⋅ ⋅ ⋅ + ⋅ + . (34) 

Here n gives the dimension, while L is just a scaling factor. 

While the classical evalua�on is given in the appendix of this paper, we here want to point out a small 
flaw or inconsistency within the classical deriva�on and intent to correct it. The basic assump�on in 
Bekenstein’s experiment is the construc�on of a bit-like informa�on, thrown into a black hole by 
choosing the size of a photon (its wavelength) equal to the Schwarzschild radius. Repea�ng the 
evalua�on with an uncertainty to this assump�on leads to quite some consequences and will later 
become important within this paper. Thereby the deriva�on of this refined equa�on is performed as 
follows:  

At first, following Bekenstein with a slight adjustment, we start with the assump�on that the photon’s 
right size should be a wavelength λ of the Schwarzschild radius rs �mes an yet unknown parameter µ. 
Knowing that the energy of the photon would be E=h*ν, with deno�ng ν the frequency and h giving 
the Planck constant, and plugging in the equa�on for the Schwarzschild radius of the photon related 
mass change ∆m (with reduced Planck constant   and the Newton constant G): 
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we can derive ∆A as follows: 
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Now we assume that we construct a whole black hole just bit by bit and that the later in the end 
consists of q bits leading to the iden�ty: 
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Solving with respect to the Schwarzschild radius measured in units of the Planck length, results in: 
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n-Spheres Grow in Dimensionality Just as Black-Holes Grow With Bits 
It was already shown in a variety of previous publica�ons [2, 5, 6, 7, 8, 12] that the equa�on from the 
Bekenstein-Hawking though experiment on black holes (38) results in a similar behavior (as least for 
bigger q and n) as our dimensional growth of extremal n-spheres (14) (see also figure one, blue curve 
for Cn=0). 



 

The Rela�on Between the Bekenstein- and the n-Sphere Picture 
Now, we compare the purely classical Schwarzschild geometric result from the Bekenstein-Hawking 
thought experiment (38), living in a 4-dimensional space-�me and our n-sphere deriva�on as a mul�- 
and variable dimensional approach. Again we point out that the two s�ll deliver similar distribu�ons 
regarding the dependency of radius and dimension for the extremal n-spheres and Schwarzschild 
radius and bits for the classical black holes (e.g. [2, 7, 8, 12]). This may have a deeper meaning [19]. 

Looking for the “connector” as a simple factor, we divide equa�on (38) by (14) and square the 
quo�ent, resul�ng in: 

 [ ]
( )( )

n

22
s

ln 1P 22

4 1r
r n

µ e

n
C
n n

π q q q
   Γ +      + 
 

⋅ ⋅ + ⋅ +  = ⋅ 
⋅



. (39) 

This �me, the ra�o for q=n and q∞ is almost 137/µ and we wonder why we are so close to the 
reciprocal of the so-called Sommerfeld fine structure constant with α=1/137.035999177.  

In the limi�ng case q∞ we can even give an accurate solu�on to the quo�ent above, reading: 
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Assuming, as Bekenstein and Hawking did, that µ should not be too different from 1, we ask for a 
factorial connec�on of the two worlds, the one of the extremal n-spheres, n-tori and so on and the 
other with smallest informa�on units, bit, namely, in our 4-dimensions of space and �me. We find 
that 16*e*π=136.636 are already prety close to those ominous 1/α=137.0… Thus, with a  
µ=(1-ε)*π and an ε=0.0029207771434275253 equa�on (40) would have delivered us exactly 1 
over the Sommerfeld fine structure constant α. 

With the µ so close to π, there is a great mo�va�on to see an entanglement of the two worlds and to 
see it in form of Sommerfeld’s constant. 

“Deriva�on” of Sommerfeld’s Constant (from [19]) 

What Does it Actually Mean to “Catch a Photon”? 
One op�on to explain the meaning of a µ different from 1 and thus, different from the Bekenstein 
assump�on, not connected to the red- or blue-shi� of the infalling photons, as discussed in [19], 
thereby assuming that the observer is directly at the event horizon and thus, sees the photon’s 
wavelength in the moment when it falls into the black hole, could just be associated with the 
following geometric considera�on: 



 

 

Fig. 5: Photon encircling a black hole. The wavelength of the photon is exactly the circumference of 
the black hole and consequently does it par�ally leave it when doing its voyage. 

Let us take just one photon and assume that there is nothing in the black hole that could absorb the 
photon. Instead, the “poor thing” is just circling around the event horizon as shown in figure 5 
(orange line). As the photon has a wavelength and an amplitude, we demand two condi�ons: 

a) The wavelength should not be bigger that the circumference of the black hole so that the 
photon can finish one cycle of oscilla�on when having circled the black hole once. This shall 
be the new bit condi�on. 

b) The photon should not be seen anywhere from the outside when doing its circling. 

For illustra�on we show a set of photons not having the right size and thus, par�ally leaving the black 
hole (coming out of the event horizon, c.f. figure 6). 



 

 

Fig. 6: 4 Photons with a wavelength equal to the circumference of the event horizon encircling a 
black hole. It oscilla�ons (a�er all the photons are waves) bring them par�ally outside the black 
hole, which should not happen. In order to avoid this, the photons need to be slightly smaller. 

The photon with the right size, which we here simplify with an oscilla�on of type: 

 ( ) ( )P A sinϕ = ⋅ ϕ , (41) 

would be one with a wavelength slightly smaller than the circumference of the black hole (figure 7). 

In order to obtain the correct wavelength, we need to evaluate the length of the curved photon 
which can be given via: 
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Here the func�on E[x] denotes the ellip�c integral of the second kind. Our defini�on of the length 
guarantees that for A0, which is associated with a completely flat wave or vanishing oscilla�on, we 
obtain the result of λ*π, which is just the circumference of the black hole, because a completely flat 
photon does not anywhere s�ck out of the event horizon. 



 

 

Fig. 7: Two photons encircling a black hole. Now the wavelength of one photon (green) is a litle bit 
shorter than the circumference of the black hole so that it always stays inside when performing its 

circles behind the event horizon. The other photon’s wavelength (orange) is exactly the 
circumference of the black hole and consequently it does not always stay inside when doing its 

voyage. We assume that this second op�on should be ruled out by a proper choice of µ. 

In any other (normal) case, we have to demand µ to be: 
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which gives us the amplitude: 

  0.10836541304457664A = ± , (44) 
and the final formula for the deriva�on of the fine structure constant as follows: 
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Of course, this is not a rigorous, which is to say fully theore�cal, deriva�on of the constant as it 
required the empirical calcula�on of the photon’s amplitude, where, not having any informa�on 
about its natural value, we needed to plug in the fine structure constant to make everything fit. If, 
however, we would be able to derive also the amplitude in a first principle, rigorous manner, our task 
of obtaining Sommerfeld’s constant in a completely analy�cal way would be complete. 

Maybe this will be possible by applying our solu�on to the photon [26, 27]. 

“Rigorous” Deriva�on of Sommerfeld’s Constant  
It was shown in [19] that we are able to derive the Sommerfeld constant by assuming a photon-
absorbing dimensionally extremal system. Thereby, the system would not be of perfectly spherically 
symmetry, which allows us to apply our result for the n-p-extremal spheroid (33). Evalua�on of the 
effec�ve (average) radius over the whole volume would be done via: 
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Choosing p=n-const we result in: 
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This leads us to a simple µ=π with the assump�on of the circling photon (figures 5 and 6) but without 
the need for any discussion about the width of a photon and the constant: 

 n 0.9985385435007366C = ± . (48) 

Please note that this is only one op�on and it only holds for systems (apparently black holes) where 
one dimensions suffices to code one bit. For all other possibili�es the reader is referred to [19]. 

Towards a Geometrical Pauli Exclusion Principle 
Every object falling into the system (joining it), thereby increasing the number of its dimensions, 
would automa�cally contribute to the increase of internal scale unless it does change the volume’s 
geometry such that its contribu�on is of non-curved character. To give an example we just need to 
explore Cartesian coordinates and imagine an n-cube where the volume would be an with “a” giving 



 

the side length of the cube. When now adding a bit more degrees of freedom, which is to say more 
dimensions ∆n to the system, we might end up with another side length b and a volume bn+∆n, but as 
we have learned from our evalua�ons in sub-sec�on “A Cartesian System Decreases in Scale When 
Dimensionally Growing”, there either is a decrease in scale when a=a[n] or there is no extremal 
condi�on which could tell us what the final result would be. In other words, when adding dimensions 
to a Cartesian system and keeping the Cartesian character of the whole, the volume stays constant 
with the scale parameter a either not changing at all (a=1) or decreasing in correspondence with 
equa�on (5). Everything would s�ll fit into the previous volume and this could be arbitrarily small. 

The situa�on changes in curved coordinates, where the “desire” for an extremal volume (or surface 
(?)) leads to an expansion pressure when new degrees of freedom are added to the system. 

This can be interpreted as a Pauli exclusion principle, only that so far we have not woven in the 
fermionic character of the new dimensions/objects/happenings/par�cles and so on. 

Now, of course, the volume exclusion is not the Pauli exclusions, because the later does not refer to 
volume elements of space, but to quantum states. So, either the dimensions are equivalent to such 
states or we have to look out for a different connec�on. 

In order to have a star�ng point for our discussion, we take our extremal p-axes spheroids from above 
(equa�ons (30) to (33)) and consider the cases p=3 (fig. 8) and p=4 (fig. 9). Please note that these 
condi�ons are equivalent to p=n-3 and p=n-4, respec�vely. 

Thereby we assume certain dimensions being special and helping to realize the extremality of the 
volume via our β-factor being allocated to these coordinates. In one case, p=3 (fig. 8), we assume 
�me to be somehow special (c.f. [20]), while in the other we incorporate the �me-coordinate into the 
set of extraordinary β-dimensions, p=4 (fig. 9). Both cases explain the change of space when 
addi�onal dimensions penetrate the system, but only the second case also changes �me. 

 

Fig. 8: Factor 𝛃𝛃 for p=3 and various radii r in accordance with our equa�on (33) for n-(volume)-
extremal-p-axis sphere-like ellipsoids. 

 



 

 

Fig. 9: Factor 𝛃𝛃 for p=4 and various radii r in accordance with our equa�on (33) for n-(volume)-
extremal-p-axis sphere-like ellipsoids. 

Interes�ngly, when incorpora�ng �me into the β-dimensions, it also shows the same behavior as the 
space-like coordinates and we know from special and general rela�vity that this should not be the 
case. The simplest solu�on to this problem – of course – is to use our own results (e.g. [20 – 24]), 
where, in fact, we always obtained �me to be something special like “lines of borrowed surfaces” [21, 
22], a by-product of cosmological superposi�vity [23] or the result of things needing a posi�on in 
order to be at all [20, 24]. This – at least momentarily – gives us the possibility to treat �me as a 
secondary effect, emerging as imaginary dimensions (“square roots of borrowed surfaces”), jitering 
posi�ons, evolu�on of a universal linearity, “cell-wall” evolu�on or dimensional changes leading to 
scaling effects on spa�al dimensions, giving us the impression of universal change (when observing or 
even living in or on the β-dimensions) and thus, �me. 

So, for the �me being, we ignore �me, respec�vely, we don’t bother with it as a truly independent 
dimension(s) (the plural op�on here stands for the possibility of mul�ple �me-coordinates, which – at 
least mathema�cally, is a possibility), and only consider special spa�al dimensions and their behavior 
in extremal voluminal spaces (or space-�mes). Time can then later be brought in again by e.g. 
jitering posi�on, whereby the jitering comes from the extremal principle as shown in our previous 
publica�ons (e.g. [20, 24]). 

So, it is only one thing we would need for now and this is a set of objects or dimensional happenings, 
spor�ng the right geometry in order to account for a special increase when being added to a system. 
Observing figure 8 with p=3, we see that slightly non-spherical objects would give us what we need as 
their – for a given radius r and from a certain dimensional number n onwards – dimensional growth 
requires also the growing of the scale parameter β, which from inside the system would be observed 
as growth for 3 of the many dimensions. One such object, we only very recently discussed, clearly 
sports a half-spin property and therefore is a fermion in the classical sense [25]. But what is more, we 
can properly illustrate its space-�me field (figures 10 – 12). 



 

 

Fig. 10: Density distribu�on of the field of a “harmonic spherical half-spin object” as presented in 
[25]. 



 

 

Fig. 11: Density distribu�on of the field of a “harmonic spherical half-spin object” as presented in 
[25]. 



 

 

Fig. 12: Density distribu�on of the field of a “harmonic spherical half-spin object” as presented in 
[25]. 

 

Conclusions 
We found a dimensional exclusion principle, which is based on the condi�on of n-extremal volumina 
(n… number of dimensions of a system). This exclusion could be interpreted as the geometrical / 
metrical or quantum gravita�onal reason for the Pauli exclusion principle of half-spin objects. 

We might even say that the whole universal expansion is just fermionic dimensional growth requiring 
the β-dimensions, being our big ordinary global dimensions, to expand with their scaling parameter 
β.  



 

As a by-product, we have also derived the fine structure constant α=1/137.035999177 as connector 
between the current model of science, seeing reality of something inside a 4-dimensional space-�me 
and a mul�-dimensional concept with also the dimensionality itself being subjected to a general 
varia�onal, extremal principle [19]. 

Thereby we applied the Bekenstein-Hawking thought experiment, where photons are swallowed by 
black holes in a bit-wise manner, in two ways: 

a) The classical picture, just as Bekenstein and Hawking did 
b) As dimensionally extremal spheres or spheroids. 

and derived α as a ra�o of the two descrip�ons of the same process.  

With this we were able to give the fine structure constant as a number consis�ng of natural 
mathema�cal constants in the following form: 
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Appendix: About the Dimensional Size of Systems 
In classical systems science there is no way to derive the necessary dimension of a system in a truly 
fundamental and neutral (mathema�cally based) manner. Thus, systems are o�en “defined” as it 
pleases the creator of the simula�on or as there are restric�ons in ability and calcula�on power for 
the “digital twin” of the natural system one intends to model. As this holds for any system, this is also 
true – of course – for the unconscious or conscious mind and thus, of great interest here. 

We start with the conjecture that not just the system’s inner proper�es and corresponding governing 
equa�ons but also the system’s size (number of degrees of freedom or dimensions) can be derived 
from a suitable minimum principle. Our star�ng point shall this �me be the Einstein-Hilbert ac�on 
with a generalized Lagrange density func�on [ ]R RΦ  and a yet undefined varia�on, which we write 

as follows: 

 [ ]( )n
? ? R
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W 0 d x g Rδ = = δ − ⋅Φ∫ . (50) 

Please note that we could also write this for a scaled metric tensor as elaborated in the previous 
appendices in order to work out the connec�on to quantum theory, respec�vely, in order to make it 
show itself directly via a set of wrapping and wave func�ons Fi[fi] and fi within the usual varia�onal 
calculus. 

In order to adjust undefined parameters and finalize the character of the varia�onal task (58), we 
intend to consider a fundamental problem and here determine the size of a black hole in a 
completely new way. Classically the size of a black hole is given by the Schwarzschild radius, which 

itself is determined by the mass m of the black hole via: 2

2
s

m Gr
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=  (G… Newton’s constant, c… 

speed of light in vacuum). This Schwarzschild radius, however, was never derived from a first 
principle, but was adjusted as a parameter to the Schwarzschild metric [14] in order to give the 
correct limit to the Newton gravita�onal law. 

Here now we want to derive the Schwarzschild radius via a suitable version of (58). In order to do so, 
we first need to repeat Bekenstein’s thought experiment of black holes. 



 

The Bekenstein Bit-Problem 
One of the most famous and equally puzzling problems in General Theory of Rela�vity is the 
Bekenstein-Bit problem, where it was found that black holes can store informa�on, but so far it is 
been seen as a mystery how these objects actually do this. In [2, 7, 8] we have shown that bit-like 
informa�on is been stored as dimensions and that each bit becomes one dimension. For convenience 
we are here repea�ng parts of the original evalua�on. 

In the early seven�es J. Bekenstein [3, 4] inves�gated the connec�on between black hole surface area 
and informa�on. Thereby he simply considered the surfaces change of a black hole which would be 
hit by a photon just of the same size as the black hole. His idea was that with such a geometric 
constella�on the outcome of the experiment would just consist of the informa�on whether the 
photon fell into the black hole or whether it did not. Thus, it would be a 1-bit informa�on. His 
calcula�ons led him to the funny propor�onality of area and informa�on. He found that the number 
of bits, coded by a certain black hole, is propor�onal to the surface area of this very black hole if 

measured in Planck area 2
P . In fact, the dependency how one bit of informa�on changes the area of 

the black hole (∆A) reads: 
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Thereby the deriva�on of this equa�on is performed as follows. At first we start with the assump�on 
that the photon’s right size should be a wavelength λ of the Schwarzschild radius rs. Knowing that the 
energy of the photon would be E=h*ν, with deno�ng ν the frequency and h giving the Planck 
constant, and plugging in the equa�on for Schwarzschild radius of the photon related mass change 
∆m (with reduced Planck constant   and the Newton constant G): 
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we can derive ∆A as follows: 
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Ignoring the extremely small second term in the last line, one could just assume our black hole to be 
constructed of many such bit surface pieces. Thus, we could write: 

 2 2 2 2 2
P s s Pq A q 32 4 r r q 8⋅ ∆ = ⋅ ⋅ π ⋅ = ⋅ π ⋅ ⇒ = ⋅ ⋅ π ⋅ 
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where rs gives the radius of the black hole. We see that our black hole radius is propor�onal to the 
square root of the bits q thrown into it. 

Now we want to compare the dependency rs[q] with the radii rmax[N] resul�ng in maximum volume of 
n-spheres for a certain number of space-�me dimensions N=n+1. 

 

 



 

 

Fig. A1: Radius rmax for which at a certain number of dimensions the n-sphere has maximum volume 
in dependency on N=n+1 compared with the increase of the Schwarzschild radius rs of a black hole 
in dependence on the number of bits q thrown into it. We find that q=N=n+1. As examples we pick 
the situa�on with a radius slightly bigger than 1.5 (whatever unit). We obtain maximum volume for 
a sphere in 15 dimensions (orange doted line). Picking a radius slightly below 1, however, gives us 

a 6-dimensional sphere which can have maximum volume at such a size (green doted line). 

 

We find a perfect fit (s. figure A1) to the rmax[N]-dependency for q=N with the following func�on: 

 ( ) 2 2
s P0.014948 0.395r U q ; U 81244= ⋅ = ⋅ π ⋅+ ⋅ 

, (55) 

where U denotes a unit-factor which was set U=1 in figure A1. 

Our finding does not only connect the intrinsic dimension of a black hole with its mass respec�vely its 
surface, but also, at least par�ally, gives an explana�on to the hitherto unsolved problem of “what 
are the micro states of a black hole giving it temperature and allowing it to store informa�on”. 
According to the evalua�on in this sec�on, these microstates are just various states of dimensions 
realized within the black hole in dependence on the number of bits it contains (and thus, its mass). 
The bigger the number of bits, the higher the intrinsic dimensions the black hole has. In fact, the 
connec�on even is a direct one and only seems to deviate from the simple direct propor�onality for 
very low numbers of masses1, respec�vely Schwarzschild radii rs, respec�vely numbers of bits q the 
black hole has swallowed. 

This finding also gives us a direct connec�on between a principle mathema�cal law (the maximum 
volume as func�on of the dimension for a given radius of an n-sphere) to the number of bits a black 

 
1 Besides, this deviation is also suggested by the Bekenstein finding summed up in equation (339), where we 
could assume the second term to become of importance at lower numbers of rs. 



 

hole contains, to the mass or Schwarzschild radius of this very black hole and the number and 
character of microstates the black hole actually uses to internally code the bits. 

It has to be pointed out that the expression “intrinsic dimension” truly stands for the part of space for 
r<rs, which is to say, the space behind the event horizon. As for the outside, the solu�on of a 
Schwarzschild object in n+1-dimensional space-�mes is given via: 
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As we find that the Newton laws of gravity, however, require N=4, it has to be assumed that in a 
region near the event horizon the dimension of the black hole decreases to the known 4 dimensions 
so that Newton’s laws of gravity are properly mirrored to us (as outside observers). The 
corresponding deriva�on was given in [8] (chapter 11). 

A System-Immanent Scale 
Note: the correct solution for the evaluation of the Schwarzschild radius rs as function of the bits 
thrown into a black hole object (if using the results from [15]) would be:  

 ( )( )s Pr 2 1= ⋅ ⋅ ⋅ + ⋅ + π q q q ! (57) 

We find a perfect fit to the n-spheres with maximized volume to a given radius (dots in figure A1) with 
a Planck length of P 0.07881256452824544= (s. figure A2, which is almost perfectly equal to the 

fit in figure A1).  



 

 

Fig. A2 (Please note that we have applied a slightly different fit than it was applied in fig. A1): 
Radius rmax for which at a certain number of dimensions the n-sphere has maximum volume in 

dependence on N=n+1 compared with the increase of the Schwarzschild radius rs of a black hole in 
dependence on the number of bits q thrown into it by using (65). We find that q=N=n+1. 

 

But what would be the unit for this Planck length?  

Well, it was already shown in [8] that by using the results from [15] and the “volume integral” (58)
with: 

 n
n n

V

W 0 d x gδ = = δ −∫ , (58) 

for n-spheres (in [15] with T[n]=1): 
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we have evaluated the very dimension n to which at a given radius rs the volume of a n-sphere has a 
maximum. The rs are put into the calcula�on as plain “natural” numbers, meaning an rs=1 is just a 1 
and that is it. We might name this unit a “mathema�cal meter” or just “mams” (plural for 
“mathema�cal meters”). Transforma�on to our usual units, like meters, requires the introduc�on of a 
factor T[n]=Un.  

With 
[ ]
[ ]

( ) 35
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, for instance, we can easily change to our 

meters. Nevertheless it appears somehow astonishing that there seems to exist a fundamental 
“natural” unit, being completely based on a mathema�cal -  geometrical - extremal principle (the 



 

maximum volume of n-spheres as func�ons of their dimensions for certain radii). It is also interes�ng 
that these dimensions are so nicely correlated to the number of bits a black hole has swallowed. In 
fact, using the unit of mams, the number of spa�al (n-sphere) dimensions is perfectly equal to the 
number of swallowed bits. 

Thus, in the case that black holes would in fact store their content as dimensions and the Einstein-
Hilbert-Ac�on being extended with respect to the number of dimensions in addi�on to the metric, 
we immediately also get an absolute scale for our black hole system in which the number 1 is “made 
out” of 12.6883 Planck length and where a 3-sphere has a radius of 0.6969979737167096 mams. 

Back to the Optimum Size Question for any System 
When observing the integral in (58), we see that – in principle – we seek for a maximum volume for a 
given dimension or, taking the radius of a Schwarzschild object, look for the corresponding dimension 
making the volume integral an extremum. As the determinant g of the Schwarzschild metric is just 
equal to the one of a n-sphere with the addi�onal �me-dimension to be integrated, we can easily use 
the volume integral result of n-spheres, which reads: 
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Please note that due to the �me-coordinate t we have Vn+1 instead of Vn. Thereby the integra�on via t 
in (68) is assumed to be performed such that it would give 1. In general, we might take care about 
this part of the integra�on via a propor�onal constant T we could even consider to be n-dependent 
T[n] and thus, equa�on (67): 
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Now we evaluate the various dimensions for which, for a given radius r of the n-sphere, we would 
obtain extrema. The results were already given in figures A1 and A2. There we have illustrated the 
resul�ng rmax as func�ons of the dimensions N=n+1 (note: n=n-sphere dimension, N=t+n-sphere 
dimension). 

Now we just compare our findings with the original ques�on of extrac�ng a minimum principle for 
the dimensional size of a given system with our generalized star�ng point for the varia�onal task (58) 
and conclude that: 
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Thus, the determina�on of the op�mum size of a system we intend to consider, inves�gate or analyze 
can just be found by a dimensional varia�on of the volume integral of that very system. In the case of 
spherical symmetries, this then leads to equa�ons of the form: 
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Along the way we also can extract suitable fundamental scales for our system. 

The First Bit Requires the Highest Mass = The First Thought is the Most Difficult 
From (65) we can now extract the minimum Schwarzschild radius for the storage of one bit, which 
would be equal to 5.508 Planck length and corresponds to 11.16 �mes the Planck mass. This is a huge 
amount of mass and thus, also energy, one needs to safely store just one single bit. Luckily, the 
situa�on improves the more bits one intends to store, as for instance the one millionth bit only 
requires about 5.5*10-3 Planck masses. Please note that, of course, one might also store bits within 
spin arrangements of electrons. Then a 1-bit informa�on would be connected with a single electron, 
whose mass and spin energy is many magnitudes below the Planck mass. This spin storage, however, 
cannot be seen as a storage of a classical binary bit, because in fact it resembles a quantum bit. 
Apparently, the safe storage of a pure and truly binary informa�on requires an - almost - macroscopic 
massive structure. Here the black hole probably provides the smallest possible mass ensemble there 
can be to arrange such a storage for a certain bit. The limit is given at about 11 �mes the Planck mass. 
Only from this mass onward black holes can store binary informa�on… at least un�l the Hawking 
radia�on leads to a destruc�on of our black hole 1-bit storage system.  

And what would then happen to the stored informa�on? Well, this brings us to the ques�on how safe 
is informa�on within our universe [16]. 

 

Byproducts: A few Fundamental Questions 

About the Rela�vity of System-Scales 
We saw that – similar to the Bekenstein or Bekenstein-Hawking problem (see reference [17]) – we 
add bits via dimensions to our metric structure (here a black hole). Assuming our metric system to be 
a black hole (which we here only use to have a simple as possible math), we can even obtain a ra�o of 
the black hole’s radius rs to the smallest structure this black hole can resolve. Taking the result for P - 

the Planck length - from the Bekenstein thought experiment, we find the ra�o between the 
Schwarzschild radius rs of a black hole and P : 

 ( )( )s

P

r 2 1= ⋅ ⋅ + ⋅ +


π q q q . (64) 

In our universe the Planck length P  is considered to be the smallest length possible to resolve. What 

if the ra�o (72), we found for black holes, actually is a more fundamental law? At any rate, it appears 
logic to assume that more bits could be coded or stored by an object of bigger size and smaller 
internal structure, thereby leaving more op�ons to describe something with these structures. Thus, 
the equa�on (72) makes intui�ve sense, but could it also be just the other way round? Could it be 
that to an object of given size the number of bits (being equivalent to its dimensions as we see in 
figures A1, A2) it contains, determines the smallest scale – the Planck length – of the object, too? 
And, if referring to the “Mathema�cal Psychology”, the system presents a thinking en�ty, does this 
also mean that thoughts have a physical scale? 

From inside and taking the Planck length as measure, the increase of informa�on to this very object, 
subject or en�ty would look like an increase of its size. Now assuming the inside of the black hole to 



 

be a general system, the inhabitants of this system may see this system as their very own universe 
and would register the increase of informa�on as a growth of their “universe”, measured in the 
Planck length of that very system-universe. When learning, we seem to feel the increase of mind. 
May be this percep�on is just what is actually really going on. 

 

Does More Informa�on Always Mean More Mass? 
Quantum computer scien�sts have already pointed out that, with our current way of storing 
informa�on, we will one day reach a limit with respect to the number of atoms we can apply for the 
storing process and the energy being needed to keep the informa�on stable (maintained). Ci�ng from 
the abstract of [18], we have the following situa�on: 

“Currently, we produce ∼1021 digital bits of information annually on Earth. Assuming a 20% annual 
growth rate, we estimate that after ∼350 years from now, the number of bits produced will exceed 
the number of all atoms on Earth, ∼1050. After ∼300 years, the power required to sustain this digital 
production will exceed 18.5 × 1015 W, i.e., the total planetary power consumption today, and after 
∼500 years from now, the digital content will account for more than half Earth’s mass, according to 
the mass-energy–information equivalence principle. Besides the existing global challenges such as 
climate, environment, population, food, health, energy, and security, our estimates point to another 
singular event for our planet, called information catastrophe.” 

It has to be pointed out that when looking for possible inner Schwarzschild solu�ons [12], we also 
found that there are solu�ons, where the mass decreases with the increase of the object size. It may 
well be that such strange states are not only realized in black holes, but could perhaps also help to 
overcome our future informa�on storage problem. 

Generaliza�on to Spheres? 

In the sub-sec�ons above we saw that, when taking the equa�on for the Laplace length P  from the 

Bekenstein thought experiment [3, 4]), we find the following ra�o between rs (Schwarzschild radius of 
a black hole) and P  (c.f. equa�on  (72)): 

 ( )( )s

P

r 2 1= ⋅ ⋅ + ⋅ +


π q q q . (65) 

Most interes�ngly, we also found that the solu�on to the extremal volume problem for a fixed radius 
rf for n-spheres results in the same dependency when varia�ng with respect to the number of 
dimensions of those n-spheres. We obtain (see dots in figures A1 and A2) excellent fits, when 
applying an approach like:  

 ( )( )fr L n n 1 nπ= ⋅ ⋅ + ⋅ + . (66) 

Thereby we have the characteris�c (system-dependent) length scale L. 

This automa�cally gives us a connec�on between the size-parameter rf of any system of spherical 
symmetry and its theore�cal capability to store informa�on. A perfect mathema�cal n-sphere 
thereby follows the rule (74) almost perfectly, while other systems may do so only from certain 
cri�cal sizes onwards, but, nevertheless, we think we can draw the conclusion that the informa�on 
storage capacity of given systems – if showing enough spherical symmetry – can be extracted from 
(74). Then the structural size-parameter rf determines the number of storable bits n in dependence 
on the system-immanent length parameter L. 



 

From this, one even may deduce that rf and L could be subs�tuted by other system characteris�cs. 
While in (74) their dimension is length, we should not exclude mass, �me, charges, energies and so 
on. 

Other Geometries 
The simplest generaliza�on of (70) can be given for an ensemble of N tori of dimensions nj for the 
sub-nj-spheres of the individual torus. The volume integral would then yield: 
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This could be further generalized for a sum of tori and leaves us with a great variety of pure volume 
(radii) and dimension varia�ons. 

As tori can be seen as combined nij-spheres with nij giving the dimension of the sub-spheres 
construc�ng each torus (70) can be generalized as follows when assuming N tori with dimensions ni 
and sub-spheres of dimensions nij: 
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Assuming that also complex symmetries of systems could be constructed out of sums of tori, we 
realize that the varia�onal op�ons are manifold: 
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and leave us with a great variety of op�ons for an op�mum sized system in the case of complex 
symmetries. 

Consequences from the Bekenstein Thought Experiment Regarding the  
Solutions to the Quantum-Einstein-Field-Equations 
In [2, 8] we have shown that the classical n-dimensional Schwarzschild solu�on could be applied to 
construct internally structured n-dimensionally black holes, while outside we s�ll have the usual 4-
dimensional solu�on from [14] with the classical Schwarzschild metric. This, however, would not 
explain how the black hole can code any informa�on.  

With the help of the new metric solu�ons evaluated in [12], namely, to just give an example, in the 
three-dimensional case with coordinates t, r and an angle: 
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(please note that r has become an angle while t took over the posi�on of the radius), 
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 (71) 

(this represents a shell-like object) we want to solve also this problem. A generaliza�on of this type 
solu�on is been given in appendix N of [2]. Thereby, we found that the Schwarzschild singularity 
could be avoided (fig. A3). 
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Fig. A3: “From the classical Schwarzschild solu�on to a Quantum Black Hole” [12] 

At first, however, we should note that also the n-dimensional Schwarzschild solu�ons from [8], 
sec�on 3.8 (c.f. solu�on (64) in here) would provide plenty of op�ons to code informa�on, because 
there are enough degrees of freedom regarding the thicknesses of the individual x-dimensional layers 
of the onion-like Schwarzschild object, which was proposed there (see also [12]). Similar assump�ons 
could be made for the Robertson-Walker approach introduced in [12], but apart from again 
men�oning the onion-layer structured ogre-mind from the movie Schreck, we will not further 
consider these possibili�es in here. 



 

In the case of photonic inner solu�ons as also suggested in [12] one might assume some kind of 
standing waves inside the black hole, but as we currently don’t have the math to realize such 
structures, we postpone the inves�ga�on of this possibility. 

Thus, we here concentrate on solu�ons (78), (79) as poten�al inner solu�ons to a black hole. As we 
see that the parameter ρ clearly is a length, we want to derive its proper�es. For the general case this 
was already done in appendix N. Nevertheless, we repeat it here for the se�ng (78) and (79).  From 
basic quantum theory we know that a par�cle at rest has the �me dependency: 

 [ ]
2m ci t

ff et C
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± ⋅ ⋅
= ⋅ , (72) 

with m giving the rest mass of the par�cle and   deno�ng the reduced Planck constant. Comparing 
with the f[t]-func�on from the metric solu�on (79), we find: 
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Here P  denotes the Planck length. By inser�ng (72) into (82) we obtain: 

 
( )( ) ( )( )

2 2
P P P

s
P

r 2 1 2 1π q q q π q q q
= = =

⋅ ⋅ ⋅ +
ρ

⋅ + ⋅ ⋅ + ⋅ +

  



. (75) 

Thus, while for a black hole the number of bits thrown into it leads to an almost perfectly square-
root-like increase of the Schwarzschild radius in accordance with equa�on (72), the ρ-parameter of 
the (79)-objects decreases with the number of bits. (79)-objects would have the same ρ-parameter, 
which we may see as a size, as a black hole only for Schwarzschild radii rs equal to the Planck length. 
In other words, for growing black holes with radii bigger than the Planck length the corresponding 
equally heavy (79)-objects would be significantly smaller than the black holes. 

So, we ask: Could the (79)-objects be used as building blocks for the black holes, residing inside it, 
which is to say behind the event horizon? 

Assuming that the black hole’s surface is made out of metric spherical objects of the type (79) and 
further assuming that each of these objects in the surface of the black hole, which is to say at r=rs 
(which also happens to be the event horizon), requires its own surface space of something like Cρ*ρ², 
we can directly evaluate the number of such (79)-objects, we from now on name ρ-spheres, are 
residing inside the event horizon with increasing numbers of bits thrown into the black hole. 
Assuming that the mass is always addi�ve, the total mass m of the black hole must then be 
distributed among the N ρ-spheres, which changes (82) to: 
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Also having to sa�sfy the following equa�on for the N ρ-spheres si�ng on the surface, we have to 
solve the following equa�on: 
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We realize, that such a structure could not be used to store any informa�on, because the number of 
ρ-spheres should have to increase with the number of bits and not decrease as it does. Things are 
improving the moment we allow a combina�on of ρ-spheres and (78)-objects (the later we shall call 
t-spheres) to make up our inner black hole. We propose the following (simplest of the many 
possibili�es) structure: 

A) In the center of the black hole sits a ρ-spheres of “radius-parameter” ρ given in (82) and thus, 
2
P

sr
ρ =



, which is to say, the bigger the Schwarzschild radius rs of the black hole, the smaller 

its core. In fact, for infinite masses the core would become a singularity. 
B) This single ρ-sphere core is surrounded by t-spheres (78) and the number of those t-spheres, 

which a black hole can bind, is propor�onal to the number of bits the black hole has 
swallowed.  

C) Taking the Bekenstein-condi�on, this demands an average size for the t-spheres, being bound 
by the black hole or the black hole’s surface, to be such that its projected surface would be 
equal to 2

P . In other words, we could assume the average radius of the t-spheres (the ones 

bound to the black hole) to be equal to /P π . 

With such a structure, it is very well possible that in fact black holes have no singularity and follow 
our scheme of inner-outer-solu�on, but one cannot detect any difference to the classical 
Schwarzschild solu�on from the outside, because the inner-parts are always hidden behind the event 
horizon. 

But does this help us to solve the Bekenstein informa�on problem? 

Yes, it does. 

We can imagine many t-sphere objects (of number N=q) si�ng on the surface of the black hole. As 
the generalized solu�on to (78) would read: 
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we see that each t-sphere could not only store informa�on via a certain sign within the exponent, but 
also via the free parameter B. 



 

The Size of the Electron? 
Applying (84) and assuming a ρ-sphere-structure for the electron, gives us: 
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Se�ng N=1 we would end up with a ρ-sphere of  131.93 10 meter−= ×ρ for the “pure” or “naked” 
electron. 
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