
 

The Fine Structure Constant just a 
Connector Between Standard Model and 
a Multidimensional Reality? 
By Dr. rer. nat. habil. Norbert Schwarzer 

The Problem 
The Sommerfeld fine structure constant is one of the most important constants in physics. It has the 
funny value of α=1/137.035999177, is dimensionless (so, really just a number) and appears in so 
many different applica�ons and effects that one defini�vely may consider it quite universal. 

But nobody can truly explain where it is coming from. 

Just for fun, let’s assume that our Standard model is not correct. I mean, it is not wrong, but also not 
quite right… in a sense that where the perfect model might give straight answers and illustra�ve 
interpreta�on in a direct way, we need adjus�ng parameters and some intricate, really not very 
intui�ve workarounds to describe the exis�ng model and its results. A�er all, the perfect model of 
reality is reality itself and hence, why not checking for an op�on to move a bit closer to this very 
reality? 

A Strange Idea 
Let’s pick the Bekenstein-Hawking thought experiment [1, 2] and throw bits into black holes. They, 
which is to say Bekenstein and Hawking, have shown that each bit increases the surface of the black 
hole by the �ny amount of one Planck length squared 2

P . Expending this experiment, one could 

think about construc�ng a whole black hole out of such bits. The growth rate for the Schwarzschild 
radius rs (marking the event horizon) of the black hole per bit q is then described by the following 
equa�on: 
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For convenience we assume to measure the Schwarzschild radius in units of the Plank length P . The 

meaning of the parameter µ will be discussed later. 

So far, everything is quite classical and we face the usual problem of having no idea what codes those 
bits inside the black hole. 

Dimensionally Extremal n-Spheres 
Now we assume that there is a different model, which could code such bits and s�ll shows the same 
or a sufficiently similar growth rate for the Schwarzschild radius. We find such a model in form of 
dimensional extremal n-spheres where the radius per dimension n follows the func�on (e.g. [3 – 7]): 
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For bigger numbers q=n we can perfectly fit the two func�ons with just one scaling parameter and 
their ra�o produces the following limit for q=n∞:  
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The aten�ve reader will have no�ced that for µ=1 (the Bekenstein-Hawking se�ng by the way) this 
value is prety close to the inverse of the fine structure constant �mes π, namely: 

216 e 136.636π⋅ ⋅ = π⋅ . Thus, in order to exactly produce the inverse of the fine structure constant 
we would require µ=0.997079*π.  

The devia�on from the Bekenstein choice µ=1 could be explained with the correct selec�on of the 
size of the photon so that it really can only carry one bit of informa�on into the black hole. We have 
to take into account that an observer in a certain distance of the black hole will have to choose the 
size of this photon such that it will have about the size of the black hole when being absorbed and 
not in the far distance. When traveling towards the black hole namely the photon undergoes a severe 
blue shi�. De facto, the blue shi� will be infini�ve for an observer in the infinity and the absorp�on 
happening at the event horizon, but it becomes finite for posi�ons slightly outside the black hole. In 
our case, placing the origin in the distant infinity the absorp�on point A should be exactly at 
A=1.0000532542*rs. In this case, the result of (3) exactly reads: 
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Ignoring any possible connec�on with the fine structure constant and demanding an outcome like: 
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the result for the absorp�on point would be even closer to the black hole, namely, 
A=1.00000539552*rs. 

But what happens if the Bekenstein assump�on of λ=rs is not correct? 

What if the photon could only be caught by the black hole and stored as a 1-bit informa�on when it 
has a certain size, which is slightly different than the Bekenstein assump�on. Let us assume that the 
catching process requires the photon to circle the black hole. Then, a simple geometric considera�on 
shows us that the shortest wavelength should be: 

 ( )s2 rλ = ⋅π⋅ + ε . (6) 

Thereby the number 2 as factor before the Pi is easily explained via our geometrical considera�on of 
the shortest wavelength circling the black hole with its circumference of s2 r⋅ π ⋅ , while the ε stands 



 

for the assump�on that the photon starts the circling process a �ny bit away from the event horizon. 
Sucking the later into an equivalent µ, gives us the following subs�tute for the Bekenstein equa�on 
(1): 
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and subsequently, instead of (3): 
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S�ll keen on obtaining the fine structure constant via: 
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gives us µ’=0.49854 and this, as it is smaller than 1, does not allow us to find an absorp�on point with 
a suitable blue shi�, because there would be no blue shi�. On the other hand, demanding: 
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leaves us with 8 e µ 'π⋅ ⋅ =  and the corresponding absorp�on point of: 
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or A=1.00021430*rs, being equivalent to ε=0. 00021430*rs or: 
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Finding the Right Dimensionality 
Naturally, we may also assume that the number of the fine structure constant just comes out of the 
quo�ent in the limit of (3), but instead of n moving towards infinity, we just have a certain 
dimensionality and need to solve the following equa�on: 
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Thereby we might assume non-black-hole objects and also consider the fact that one bit does not 
only need one dimensions to be coded but k dimensions. In this case (13) changes to: 
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Se�ng µ=1, we find that reasonable results can only be expected for k≤3 and the Cn chosen such 
that we always end up in posi�ve integer n. 

This aspect will be discussed in [8]. 

Dimensionally Extremal n-p-Spheroids 
Now we generalize our n-spheres to spheroids with p axes being different from r, leading to the 
following volume formula: 
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Where the difference of the two sorts of axes is defined by a factor β= β[n]. The result for the n-
extremal condi�on reads: 
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and gives the following solu�on for the radius factor β[n]: 
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Fig. 1: Factor 𝛃𝛃 for various p in accordance with our equa�on (17) for n-(volume)-extremal-p-axis 
sphere-like ellipsoids. 

Evalua�on of the effec�ve (average) radius over the whole volume would be done via: 
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Choosing p=n-const we result in the following limi�ng equa�on: 
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This leads us to a simple µ=π with the assump�on of the circling photon (see [9]) and the constant: 

 n 0.9985385435007366C = ± . (21) 

Eccentricity 
In accordance with the eccentricity for ordinary ellipse, we might define an n-p-eccentricity as 
follows: 
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This gives us the following limit for the linear eccentricity of our photon ea�ng objects: 
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We realize that we are dealing with rather extreme objects of such eccentricity that in essence only 
the β-dimensions are domina�ng the scenery (“survive”), while the other dimensions become 
completely recessive. 

Important Note 
It needs to be pointed out explicitly that our results here are just one op�on and it only holds for 
systems (apparently black holes) where one dimensions suffices to code one bit. For all other 
possibili�es the reader is referred to [8, 9]. 
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