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Why we need a generalization of the 
Hamilton Extremal Principle 
By Dr. rer. nat. habil. Norbert Schwarzer 

1 Abstract 
By demonstra�ng that a general extremal principle of truly holis�c character automa�cally 
contradicts the concept of par�cles, we gain insight into one fundamental aspect governing this 
universe, namely, the only thing being certain is uncertainty. 

The harder we try to fix something in any way, the more this very something tends to evade the 
constraints. It is similar to Lenz’s law in physics where the current induced by a magne�c field always 
acts against its source. 

Completely generalized, this even leads to an adjustment the Hamilton extremal principle. 

In this paper we are going to introduce and inves�gate this generaliza�on. 

2 Introduc�on 
2.1 The Classical Hamilton Extremal Principle 
From Wikipedia, the free encyclopedia (htps://en.wikipedia.org/wiki/Hamilton's_principle): 

In physics, Hamilton's principle is William Rowan Hamilton's formulation of the principle of stationary 
action. It states that the dynamics of a physical system are determined by a variational problem for a 
functional based on a single function, the Lagrangian, which may contain all physical information 
concerning the system and the forces acting on it. The variational problem is equivalent to and allows 
for the derivation of the differential equations of motion of the physical system. Although formulated 
originally for classical mechanics, Hamilton's principle also applies to classical fields such as the 
electromagnetic and gravitational fields, and plays an important role in quantum mechanics, 
quantum field theory and criticality theories. 

So, the defini�on of the Hamilton principle is based on its “formula�on of the principle of sta�onary 
ac�on”. In simpler words, the varia�on of such an ac�on should be zero or, mathema�cally 
formulated, should be put as follows:  

 n

V

W 0 d x g Lδ = = δ ⋅ − ⋅∫ . (1) 

Here L stands for the Lagrangian, W the ac�on and g gives the determinant of the metric tensor, 
which describes the system in ques�on within an arbitrary Rieman space-�me with the coordinates x. 
Thereby, we used the Hilbert formula�on of the Hamilton principle [1] in a slightly more general 
form. We were able to show in [2] that the original Hilbert varia�on does not only produce the 
Einstein-Field-Equa�ons [3] but also contains the quantum theory [2, 4, 5]. It should be noted that, 
while the original Hilbert paper [1] stated with the Ricci scalar R as the integral kernel, which is to say 
L=R, we here used a general Langrangian, because – as we will show later in this appendix – this 
generality – in principle – is already contained inside the original Hilbert formula�on. Even, as strange 
as it may sound at this point, general kernels with func�ons of the Ricci scalar f(R) [6] are already 
included (see sub-sec�on “Why Don’t We See f(R)-Lagrangians in this Universe?”) in the Hilbert 
approach. 

https://en.wikipedia.org/wiki/Hamilton's_principle


 

2.2 The Hamilton Principle on Shaky Grounds 
But what if we’d live in a universe, where the only thing which is certain was uncertainty? 

This author, always used the analogy of a moving fulcrum to demonstrate his uneasiness with the 
formula�on (1).  

In [7] we were able to show that the Hamilton principle itself hinders us to localize any system or 
object at a certain posi�on. We also see that this contradicts the concept of par�cles. Everything 
seems to be permanently on the move or – rather – ever-jitering. The quite surprising insight was 
rigorously derived in our book [7] in chapter 10. Verbally it could be summed up very briefly as 
follows: 

a) Try to define a par�cle and by doing so, you realize that you have to give the thing – no 
mater how you want to make it look like – a posi�on. A�er all it has to be somewhere… the 
something or whatever “happening” you intend to place in your space-�me. Thereby it does 
not mater whether one considers the real space-�me or a theore�cal model. 

b) You realize that this posi�on is just another degree of freedom, which you have to treat as 
such, because otherwise you are just viola�ng the classical/established physical laws. 

c) So, you take the most general principle established physics has, which is the Hamilton 
minimum principle in its most general form, the Einstein-Hilbert ac�on (1) and you subject 
your par�cle, or whatever else it is you wanted to allocate a loca�on to, to it 

d) When doing so correctly, which is to say, taking the posi�on of the very par�cle into account, 
too, the par�cle literally dissolves in front of you and becomes just a wave 

e) Hence: there are no par�cles in this universe. It’s all just waves 

 

But if this ever-jitering fulcrum was one of the fundamental proper�es of our universe, should we 
then not take this into account when formula�ng the laws of this very universe? Shouldn’t we beter 
write (1) as follows: 

 n

V

W 0 d x g Lδ → ≅ δ ⋅ − ⋅∫ ? (2) 

And while we are at it, should we not start to inves�gate an even more general principle like: 

 ( ) n

V

W f W, x,g d x g Lαβδ → = δ ⋅ − ⋅∫ ? (3) 

It will be demonstrated in the appendix by my partner and friend Norbert Schwarzer, why such a 
generaliza�on is jus�fied. 

The interes�ng aspect about this is that this inves�ga�on was already – par�ally – done by 
(surprise, surprise) e.g. Hilbert and Einstein. But instead of explaining it in this way, they have 

“hidden” their generaliza�on inside other concepts like the introduc�on of a cosmological constant 
or – oh yes – the postula�on of mater and its introduc�on via an ominous and purely postulated 

parameter LM, which is to say, an Lagrange mater term. 

Consequently, it should be made abundantly clear that neither this author nor anybody else (nor Dr. 
Mar�n, see appendix) has “invented” this extended principle. It is just, as we will also see in 
connec�on with the chapter “Why Don’t We See f(R)-Lagrangians in This Universe?” another way to 
add in varia�onal anomalies into the classical extremal and varia�onal process like the cosmological 



 

constant or mater. It is also just another way to add linear independency to the classical theory in 
order to – for instance – tackle the 3 genera�ons problem of elementary par�cles [11, 15, 16, 17] by 
the means of the Bianchi iden�ty. 

3 Theory 
3.1 Principle of the Ever-Jitering Fulcrum  
Taking the example of the concept of the par�cle, which dissolves itself, the more one tries to push it 
into existence, we realize that there is just nothing in this universe which we are able to “place inside 
a box and make the box to shrink to an infinitesimal size”. The moment we try, we have to give the 
box a posi�on, hence coordinates, and those are also degrees of freedom, subjectable to the 
Hamilton principle, being realized in the Hilbert varia�on process, leading to a fundamental 
uncertainty of the posi�on of our box.  

Thereby, it does not mater what we want to place inside the box. It could be anything and thus, 
everything, no mater what it is, the moment we intend to localize it, becomes subjectable to the 
Hamilton process and ends up as wave with an uncertain posi�on. 

In other words: A fulcrum can have not perfectly well-defined posi�on in space (figure 1). 

Fig. 1: Symbolizing the “Principle of the Ever-Jitering Fulcrum” (ar�st: Livia Schwarzer) 

Applied on the Hamilton principle itself (see appendix), we end up with the necessity to also include 
such an uncertainty into this very principle. This can be done in a variety of ways and it is most 
interes�ng that one of the outcomes is just mater. Here it can almost be seen as an irony that even 
Einstein and Hilbert saw this when deriving their theore�cal apparatus, but instead of thinking about 
it fundamentally, both resorted to the solu�on of just postula�ng what they righ�ully discovered as 
missing. This way, the mater was introduced as the momentum-energy tensor in Einstein’s General 
Theory of Rela�vity [3] and as mater Lagrange density in Hilbert’s varia�onal approach [1]. 

4 Conclusions 
“If there is one thing certain in this universe, it is uncertainty!”  

Taking this recogni�on to heart leads to a generalized Hamilton principle, an answer to the problem 
of the three genera�ons of par�cles and its generaliza�on to all systems, a quantum gravity theory, a 
destruc�on of the concept of par�cles, an understanding for the occurrence of mater, a theory of the 



 

rela�vity of perspec�vity, an approach for the modelling of socio-economic space-�mes, an 
explana�on for the phenomenon of coherent domains and structured water… 

… and so much more. 

5 Appendix  
5.1 The Classical Hamilton Extremal Principle and how to obtain Einstein’s General 

Theory of Rela�vity With Mater (!) and Quantum Theory… also With Mater (!) 
The famous German mathema�cian David Hilbert [1], even though applying his technique only to 
derive the Einstein-Field-Equa�ons for the General Theory of Rela�vity [3] in four dimensions, - in 
principle - extended the classical Hamilton principle to an arbitrary Rieman space-�me with a very 
general varia�on by not only – as Hamilton and others had done – concentra�on on the evolu�on of 
the given problem or system in �me, but with respect to all its dimensions. His formula�on of the 
Hamilton extremal principle looked as follows: 

 ( )( )n
M

V

W 0 d x g R 2 Lδ = = δ − ⋅ − Λ +∫ . (4) 

There we have the Ricci scalar of curvature R, the cosmological constant Λ, the Lagrange density of 
mater LM and the determinant g of the metric tensor of the Rieman space-�me gαβ. For historical 
reasons, it should be men�oned that Hilbert’s original work [1] did not contain the cosmological 
constant, because it was added later by Einstein in order to obtain a sta�c universe, but this is not of 
any importance here. The evalua�on of the so-called Einstein-Hilbert ac�on (4) brought indeed the 
Einstein General Theora of Rela�vity [3], but it did not produce the other great theory physicists have 
found, which is the Quantum Theory. It was not before Schwarzer, about one hundred years a�er the 
publica�on of Hilbert’s paper [1], extended Hilbert’s approach by considering scaling factors to the 
metric tensor and showed that quantum theory already resides inside the sufficiently general General 
Theory of Rela�vity [2, 4, 7, 8, 9]. We will not discuss the reason why this simple idea has not been 
tried out by other scien�sts before, but we may s�ll express our amazement about the fact that a 
simple extension of the type: 

 [ ]G g F fαβ αβ= ⋅ , (5) 

solves one of the greatest problems in science1, namely the unifica�on of physics and that it took 
science more than 100 years to come up with the idea. Using the symbol G for the determinant of the 
scaled metric tensor Gαβ from (5) of the Rieman space-�me we can rewrite the Einstein-Hilbert ac�on 
from (4) as follows: 

 ( )( )n q *
M

V

W 0 d x G F R 2 Lδ = = δ − ⋅ ⋅ − Λ +∫ . (6) 

could also be possible and s�ll converges to the classical form for F1. Here, which is to say in this 
paper, we will only consider examples with q=0, but for completeness and later inves�ga�on we shall 
men�on that a comprehensive considera�on of varia�onal integrals for the cases of general q are to 
be found in [4]. Performing the varia�on in (6) with respect to the metric Gαβ and remembering that 
the Ricci curvature of (e.g. [7] appendix D) changes the whole varia�on to: 

 
1 This does not mean, of course, that we should not also look out for generaliza�ons of the scaled metric and 
inves�gate those as we did in [10]. 



 

 
( )

( ) ( )

cd
,d ,c2 F 2F g

ab cd ab
,ab ,d ab,c2

n q cd ab
M,d ac,b

V
ab

,a ,b
3

R 1 2g F F g g gn 1
F 2F

W d x G F 2 LnF g g g

g F F
n 6n 1 4F

= ∆ −          + −−    
    δ = δ − ⋅ ⋅ − Λ +−    
   ⋅   − −−      

∫



, (7) 

results in: 

 

( ) ( )

G

* *

ab ab
b, ,b, ,ab ,a

c, c, c,
ab ab cd

, b,a , b,a ,d
ab

,c ab,c

11 10 g gR R G
F2 F

g gF F g g F gn 2
1 11 g ng ngR 2 22F F g g F g g F g

1 1ng g g g
2 2

αβδ

αβ αβ
αβ αβ

β α βααβ αβ

α β α β β α
αβ

α β β α

αβ αβ

    = ⋅δ + ⋅δ− ⋅        

 −+ + −−

  − − −

− +  
 + + 
 

=



( ) ( )( )

( )

( )

( )
( )

cd
,d ,c

cd
, , ,c ,d2

2 F 2F g

ab cd ab ab
,ab ,d ab,c ,a ,b

2
cd ab

,d ac,b

1 F F g F F g3n 6 4 n4F

g2g F F g g g g F F Rn 1 n 62F 4F 2n 1n F g g g
n 1

α β αβ

= ∆ −

αβ

 
 
 
  
  
     
 + ⋅ +− − 
 
   
   + ⋅−   + + − ⋅−   −  −  −  



Gαβ


 
 
 
 
 
 
 

δ 
 
 
 
 
 
 
  



, (8) 

when se�ng q=0 and assuming a vanishing cosmological constant. With a cosmological constant we 
have to write: 

 

( ) ( )

( ) ( )( )

( )

ab ab
b, ,b, ,ab ,a

c, c, c,
ab ab cd

, b,a , b,a ,d
ab

,c ab,c

cd
, , ,c ,d2

g
R R g

2

g gF F g g F gn 2
1 11 g ng ng
2 22F F g g F g g F g

1 10 ng g g g
2 2

1 F F g F F g3n 6 4 n4F

n 1
2F

αβ
αβ αβ

β α βααβ αβ

α β α β β α

α β β α

αβ αβ

α β αβ

− + Λ ⋅

 −+ + −−
 
  − − −  

− +   
  = + +    

+ ⋅ +− −

−+

( )

( )

cd
ab,d ,c

,a ,b
2cd ab

,d ac,b

G

2 F 2F g
gg F F

n 6n 4F 2F g g g
n 1

αβ

αβ

 
 
 
 
 
 
 
 
 

δ 
 
 
 
 
   ∆ − ⋅   + ⋅−   −   −   

. (9) 

For beter recogni�on of the classical terms, we have reordered a bit and boxed the classical vacuum 
part of the Einstein-Field equa�ons (double lines) and the cosmological constant term (single line). 
Everything else can be – no, represents (!) - mater or quantum effects or both. 



 

Thus, we also – quite boldly – have set the mater density LM equal to zero, because we see that 
already our simple metric scaling brings in quite some op�ons for the construc�on of mater. It will be 
shown elsewhere [10] that there is much more which is based on the same technique. 

5.2 The Alternate Hamilton Principle 
We might bring forward three reasons why we could doubt the fundamentally of the Hamilton 
principle even in its most general form of the generalized Einstein-Hilbert ac�on: 

a) The principle was postulated and never fundamentally derived. 
b) When rigidly demanding the extremal condi�on, the extremum should become an object 

being dependent on all coordinates. Some kind of posi�on appears, which defines or rather 
“makes out” the extremum. Trea�ng these posi�on parameters as new atributes, the 
varia�on should be refined with respect to those and thus, the whole task increases its 
dimensionality. This was first rigorously derived by this author in [13, 14] and later repeated 
by him with some more vigor in [7]. No mater how o�en one repeats the process, there is 
always an uncertainty about the final number of dimensions, in principle increasing towards 
infinity. This entangles with another of principle, namely the one of the “infinite 
orthogonality” (using an expression of Dr. David Mar�n, second author of [7]), which we will 
inves�gate in another paper [12]. Hence, the process is never truly complete and the result 
can never be a 100% - stable - extremum. 

c) Even the formula�on of this principle in its classical form (4) results in a variety of op�ons 
where factors, constants, kernel adapta�ons etc. could be added, so that the rigid se�ng of 
the integral to zero offers some doubt in itself. A calcula�on process which offers a variety of 
add-ons and op�ons should not contain such a dogma. The result should be kept open and 
general. One of the authors of [7] (Dr. David Mar�n) verbally proposed this as the “tragedy of 
the jitering fulcrum” and we therefore named this principle David’s principle of the ever 
jitering fulcrum. Rigorously put mathema�cally by this author, it demands: 

 

n
g g

V

n *
G G

V

W ? d x g R

W ? d x G R

αβ αβ

αβ αβ

δ δ − ×

δ δ − ×

∫

∫

 

 

. (10) 

 

Fig. A1: David’s principle of the Ever Jitering Fulcrum cannot accept a dogma�c insistence on a zero 
outcome of the Einstein-Hilbert ac�on (4) or (generalized and also bringing about the Quantum 

Theory) (6). Instead it should allow for all states and not just the extremal posi�on (see the two red 
dots and the corresponding tangent planes in the picture). 



 

 

One of the simplest generaliza�ons of the classical principle could be the linear one, which is 
illustrated in figure A1. It could be constructed as follows: 

 n n
g g

V V

d x g g W d x g Rh
αβ αβ

αβ
αβ− × ⋅ = δ = δ − ×∫ ∫ . (11) 

Thereby we have used the classical form with the unscaled metric tensor, respec�vely without se�ng 
the factor apart from the rest of the metric. Performing of the varia�on on the right-hand side and 
se�ng 

 gh Hαβ αβ= ⋅δ  (12) 

or – for the reason of – maximum generality even: 

 ab
ab gh H Hαβ αβ αβ= ⋅δγ = ⋅δ  (13) 

just gives us the same result as we would obtain it when assuming a non-zero cosmologic constant, 
because evalua�on yields: 

 
n n

V V

n

V

Rd x g g g d x g R g g
2

R0 d x g R g g g
2

H

H

αβ αβ
αβ αβ αβ

αβ
αβ αβ αβ

 − × ⋅δ ⋅ = − × − δ 
 

 ⇒ = − × − − δ 
 

∫ ∫

∫
, (14) 

respec�vely: 

 
n ab n

ab
V V

n

V

Rd x g g d x g R g g
2

R0 d x g R g g g
2

H

H

αβ αβ
αβ αβ αβ

αβ
αβ αβ αβ

 − × ⋅δγ ⋅ = − × − δ 
 

 ⇒ = − × − − δ 
 

∫ ∫

∫
. (15) 

 

Simply se�ng H=-Λ (c.f. single-line boxed term in equa�on (9)) demonstrates this. 

Nothing else is the usage of a general func�onal term T, being considered a func�on of the 
coordinates of the system (perhaps even the metric tensor) in a general manner, as follows: 

 n n
g g

V V

d x g T W d x g R
αβ αβ

− × = δ = δ − ×∫ ∫ . (16) 

As before, performing of the varia�on on the right-hand side and se�ng 

 T T gαβ
αβ= ⋅δ  (17) 

gives us something which was classically postulated under the varia�onal integral, namely the 
classical energy mater tensor. This �me, however, it simply pops up as a result of the principle of the 
jitering fulcrum and is equivalent to the introduc�on of the term LM under the varia�onal integral. 
Evalua�on yields: 

 
n n

V V

n

V

Rd x g T g d x g R g g
2

R0 d x g R g T g
2

αβ αβ
αβ αβ αβ

αβ
αβ αβ αβ

 − ⋅ ⋅δ = − × − δ 
 

 ⇒ = − × − − δ 
 

∫ ∫

∫
, (18) 



 

So, we see, that in introducing a cosmological constant and in postula�ng a mater term, even 
Einstein and Hilbert already – in principle - “experimented” with a non-extremal se�ng for the 
Hamilton extremal principle. 

Apart from linear dependencies and other func�ons or func�onal terms, we could just assume a 
general outcome like: 

 ( ) n n
g g

V V

f W f d x g R W d x g R
αβ αβ

 = − × = δ = δ − × 
 
∫ ∫ . (19) 

This, however, would not give us any substan�al hint where to move on, respec�vely, which of the 
many possible paths to follow. We therefore here start our inves�ga�on with the assump�on of an 
eigen result for the varia�on as follows: 

 n n
g g

V V

W d x g R W d x g Rh h
αβ αβ

⋅ = ⋅ − × = δ = δ − ×∫ ∫ . (20) 

This leads to: 

 n

V

1d x g R g R g g 0
2

+ hκλ κλ
κλ κλ

  − δ − ⋅ ⋅ δ =    ∫  (21) 

As the term h  could always be expanded into an expression like: 

 g gh = H κλ
κλ⋅ δ  (22) 

we obtain from (21): 

 

n

V

n

V

10 d x g R g R g g
2

1d x g R R g g
2

1R R g 0
2

+ H

+ H

+ H

κλ κλ
κλ κλ

κλ
κλ κλ

κλ κλ

  = − δ − ⋅ δ    

  = − − ⋅ δ    

 ⇒ − ⋅ = 
 

∫

∫  (23) 

We realize that the term H can be a general scalar even if we would demand the term h  to be a 
constant. 

The complete equa�on when assuming a scaled metric tensor of the form (5) would read: 
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and in the case of metrics with constant components this equa�on simplifies to: 
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   ⋅  −− − ⋅ + −      

. (25) 

5.2.1 The Ques�on of Stability 
From purely mechanical considera�ons, one might assume that extremal solu�ons of the varia�onal 
equa�on (10) correspond to more stable states than non-extremal solu�ons and in fact we will find 
this in connec�on with the 3-genera�on problem, which we have derived and discussed elsewhere 
[11]. 
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