
 

Solving the 1/137-Riddle? 
By Dr. rer. nat. habil. Norbert Schwarzer 

Abstract 
In this paper we will derive the fine structure constant α=1/137.035999177 [A1] from the Bekenstein-
Hawking thought experiment [A1 – A4], by applying an extremal principle with respect to the number 
of dimensions [A5, A6]. 

We find that the fine structure or Sommerfeld constant, as it’s also been called, apparently is just a 
connector between the current model of science, seeing reality of something inside a 4-dimensional 
space-�me and a mul�-dimensional concept with also the dimensionality itself being subjected to a 
general varia�onal, extremal principle. 

With this approach we are able to give the fine structure constant as a numerical construct, consis�ng 
of natural mathema�cal constants in dependence on the number of dimensions needed for the 
storage of one bit. Here is our result for black holes with one bit being coded by just one dimension: 
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What is the Fine Structure Constant (AI generated text)? 
“The fine-structure [or Sommerfeld] constant, denoted by α, is a fundamental dimensionless 
physical constant that quan�fies the strength of the electromagne�c interac�on between 
elementary charged par�cles. Its CODATA recommended value is α = 0.0072973525643(11), 
corresponding to a reciprocal value of 1/α = 137.035999177(21). This constant is defined in terms of 
the elementary charge (e), the speed of light (c), the reduced Planck constant (ħ), and the electric 
constant (ε₀) as α = e²/(4πε₀ħc). The value of α is determined experimentally, with high-precision 
measurements relying on techniques such as electron anomalous magne�c moment measurements 
and photon recoil in atom interferometry, which have achieved uncertain�es at the level of parts per 
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trillion. The fine-structure constant plays a crucial role in quantum electrodynamics (QED), where it 
represents the coupling strength between electrons and photons, and its precise measurement 
serves as a stringent test of the Standard Model of par�cle physics.” 

For Entertainment and as Introduc�on: A Brief Story 
A Nobel prize winner in chemistry, learning about my Quantum Gravity approach recently wrote me 
the following lines: 

„I do grant you that the advantage of the closed form is to be able to see analy�cal paterns and 
rela�onships that might have been hidden before.” 

Here is my answer 

Dear Prof. X, 

regarding your friendly and mo�va�ng text piece „I do grant you that the advantage of the closed 
form is to be able to see analy�cal paterns and rela�onships that might have been hidden before.” 
(which doesn’t mean at all that the rest is unfriendly, of course), I have to admit that I already came 
across some very interes�ng of such “analy�cal paterns and rela�onships”. Most are too complex to 
find a short way to explain them (my usual problem without the math – my sincere apologies) but 
here is one I find both, short and intriguing: 

When inves�ga�ng a very simple metric model about the dimensional size of black holes in 
connec�on with the Bekenstein-Hawking thought experiment (throwing bits into black holes), a 
certain number appears which – as a unitless number – has to be quite fundamental, universal and 
independent on physical laws, because, as said, it is just a number. 

In my purely metric or geometric model, based on the equa�ons on the 1-pager [I1], the number is 
1/(16*pi*e) (with e being Euler’s number) and not only is it quite persistent in its appearances, but it 
also is – for my taste – a litle bit too close to the so-called Sommerfeld fine structure constant 
alpha=1/137.035999206 to be just a coincidence. 

You know, of course, that the ques�on about the origin of this constant is one of the most fascina�ng 
riddles in science since Sommerfeld discovered it more than one hundred years ago. 

Best wishes 

Norbert 

 

His answer: “Well yes, this is the way to atract aten�on to your comprehensive formalism.” 

[I1] N. Schwarzer, “Do We Have a Theory of Everything – One Pager”, 2025, a SIO science 
paper, www.siomec.de, htps://www.siomec.com/pub/2025/b17 

The Bekenstein-Hawking Thought Experiment 

How Some Dimensions Need Space 
It was shown in [2] that for spaces of n-spherical symmetry the radius increase with increasing 
dimension follows the bit-wise growth of a black hole when always demanding the radius for the n-
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sphere to couple at its extremal dimensional condi�on. This means that the number of dimensions 
for the very n-sphere is chosen such that either surface or volume are extremal. The corresponding 
radius shows the Bekenstein-Hawking behavior [3, 4]: 

 ( )( )fr 2 L n n 1 nπ= ⋅ ⋅ ⋅ + ⋅ + . (2) 

Here n gives the dimension, while L is just a scaling factor. 

While the classical evalua�on is given in the appendix of this paper, we here want to point out a small 
flaw or inconsistency within the classical deriva�on and intent to correct it. The basic assump�on in 
Bekenstein’s experiment is the construc�on of a bit-like informa�on, thrown into a black hole by 
choosing the size of a photon (its wavelength) equal to the Schwarzschild radius. Repea�ng the 
evalua�on with an uncertainty to this assump�on leads to quite some consequences and will later 
become important within this paper. Thereby the deriva�on of this refined equa�on is performed as 
follows:  

At first, following Bekenstein with a slight adjustment, we start with the assump�on that the photon’s 
right size should be a wavelength λ of the Schwarzschild radius rs �mes an yet unknown parameter µ. 
Knowing that the energy of the photon would be E=h*ν, with deno�ng ν the frequency and h giving 
the Planck constant, and plugging in the equa�on for the Schwarzschild radius of the photon related 
mass change ∆m (with reduced Planck constant   and the Newton constant G): 
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we can derive ∆A as follows: 
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Now we assume that we construct a whole black hole just bit by bit and that the later in the end 
consists of q bits leading to the iden�ty: 
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Solving with respect to the Schwarzschild radius measured in units of the Planck length, results in: 
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Purely Geometric Evalua�on  - Keeping Things Simple 
While equa�on (2) is derived from the Bekenstein thought experiment [3, 4] (see appendix) and 
therefore lacks a rigorous purely mathema�cal explana�on, we now want to extract its fundamental 
content directly from a geometrical considera�on. We start with the volume of the n-sphere: 
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Deriva�on with respect to n leads to: 
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Here Hn[x] denotes the harmonic number of x and γ gives the Euler Gamma constant with 
approximately γ=0.57722… 

Demanding the volume to be extremal, we have to set: 
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obtain the following solu�on for the radius r: 
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Of course, our evalua�on is slightly incorrect, because we did not assume an n-dependency for the 
radius r when performing the evalua�on in (8). This will be corrected later as it only complicates the 
situa�on now and holds us up from moving fast forward in order to obtain a rough overview. 

Please note that due to Hn[0]=0 for n=0 the radius for the zero-dimensional sphere does not vanish, 
but is: 
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Se�ng the result (10) into (7) gives us extremal n-sphere volumina as follows:  
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The case of n=0 results in: 
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Meaning, the dimensionless extremal n-sphere s�ll has a finite volume and a radius. 

In the case of general curved geometries we may assume to be able to describe them as generalized 
n-tori of extremal sub-domains and end up with a volume equa�on as follows: 
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We see that the volume then solely depends on the symmetry of the system and the number of 
dimensions of the corresponding manifolds. 

In the case of n-Ellipsoids the result would be a less dis�nct, because here the volume is given 
through: 
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With aj deno�ng the half-axes of the ellipsoid. 

The Rela�on Between the Bekenstein- and the n-Sphere Picture 
From the deriva�on of our equa�ons (2) (see appendix) and (6) it becomes clear that they are purely 
classical Schwarzschild geometric products. Hence, this theory plays its role in a 4-dimensional space-
�me. The n-sphere deriva�on therea�er, however, is a mul�- and variable dimensional approach. 
That the two s�ll deliver similar distribu�ons regarding the dependency of radius and dimension for 
the extremal n-spheres and Schwarzschild radius and bits for the classical black holes may have a 
deeper meaning. 

In trying to find the “connector” as a simple factor, we divide equa�on (6) by (10) and square the 
quo�ent, resul�ng in: 
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To some it might say nothing that the result of this ra�o for q=n and q∞ is 157.914/µ, but this 
author finds it a litle bit too close to the reciprocal of the so-called Sommerfeld fine structure 
constant with α=1/137.035999177.  

In the limi�ng case q∞ we can even give an accurate solu�on to the quo�ent above, reading: 
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Assuming, as Bekenstein and Hawking did, that µ should not be too different from 1, we may wonder 
whether the connec�on of the two worlds, the one of the extremal n-spheres, n-tori and so on and 
the other with our 4-dimensions of space and �me, has something to do with this strange 
dimensionless constant α=1/137.0…. As a mater of fact, with µ=1.1523517277636182 we obtain 
exactly 1 over the fine structure constant α. 

When trying to explain the meaning of a µ different from 1 and thus, different from the Bekenstein 
assump�on, we could just assume that the photon should not have the size of the Schwarzschild 



 

radius of the black hole, but should actually be bigger, as the bit-wise feeding of the black hole should 
make it Schwarzschild sized when it reaches the black hole and not many diameters away. A�er all, 
there is some blue shi� to the photon to be expected when it travels towards the black hole. Usually, 
this blue shi� would be infinite from any posi�on outside to the event horizon, but only when the 
photon really need to travel un�l the very end, which is to say to the event horizon of the black hole. 
What, however, when this is not of need? What when the blue shi� only needs to be of such strength 
that it makes to shrink the wavelength of the photon from µ*rs down to rs? Assuming the observer to 
be at infinity with respect to the black hole the redshi� can be given via: 
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We find that the parameter A would be A=4.04958, meaning that the absorp�on point ra would be 
about 4 �mes the radius of the black hole outside the massive object. In this case, the equa�on (17) 
could be rewriten as follows: 
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Not aiming for the reproduc�on of fine structure constant but elimina�ng the nominator in (17) with 
a blue shi� produced µ directly, which is to say, demanding: 
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we’d obtain an absorp�on point very near the event horizon, with an A of A=1.0000401031 or 
exactly: 
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We wonder, having just found that extremal spheres have minimum radius even for the case n=0 (c.f. 
equa�on (11)), whether there even is an event horizon and a true black hole or whether we rather 
have to deal with extremal n-geometrical objects. 

Brief Considera�on of n-Tori 
Instead of n-spheres we now want to inves�gate various n-tori structures in order check out the 
effects of the addi�onal degrees of freedom these objects might bring to the game. 

As an example we consider an n-torus with two equally-dimensional manifolds but not necessary 
equal radii: 
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Deriva�on with respect to n1 and n2 gives: 
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Se�ng n1=n2=n/2 and r2=β*r1= β*r leads us to the following equa�on for the radius r: 
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Now, as in (19), taking (6) as dominator, dividing by our result r[n] from (24), we obtain: 
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Now we simply assume that the bit-wise build-up does not refer to a black hole but an arbitrary 
object with radius rf and that we can subs�tute the Planck length by a general scale L (see equa�on 
(2)) in accordance with: 
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and we see that we can have a rather flexible “connector” of informa�on driven growth to various 
geometries in a mul�tude of n-tori realms. In the example here, we might just assume µ=1 and β 
chosen such that it sa�sfies: 
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which would connect the fine structure constant to an internally structured n-tori object with two 
equally dimensional, but differently sized domains. Their asymmetry corresponds to the fine 
structure constant. 

Correc�on of the Evalua�ons With Respect to Variable 
Radii and the Connec�on to α 
In this sec�on we now strictly avoid any incorrec�on with respect to the dimensional dependency of 
parameters and repeat some important evalua�ons from above accordingly. 

The n-Extremal Sphere 
In contrast to our simplified evalua�on (8), we now explicitly consider an n-dependent radius and 
start with the volume func�on for an n-sphere, reading: 
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Deriva�on with respect to n leads to: 
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Demanding the volume to be extremal, we now obtain the following differen�al equa�on of first 
order in the dimensions n for the radius r[n]: 
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resul�ng in the following solu�on for the radius r[n]: 

 [ ]
n

ln 1
2

2
r en

n
C

n n

π

  Γ +    +

= . (31) 

Thereby, this �me, we even have obtained an arbitrary constant Cn. Se�ng this constant zero, we 
note again that for n=0 the radius is not zero, but exactly what we already have obtained above, 
namely: 
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Surprisingly, leaving the constant finite, we would even obtain r[0]=∞. 

The n-p-Extremal Ellipsoid 
Now we generalize our sphere to an n-p-spheroid with p axes being different from r, leading to the 
following volume formula: 
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The difference of the two sorts of axes is defined by a factor β. The result for the derivate with 
respect to the number of dimensions n reads: 
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and gives the following solu�on for the radius factor β[n]:  
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Now Corrected: The Rela�on Between the Bekenstein- and the n-
Sphere Picture 
Now, as before, we compare the purely classical Schwarzschild geometric result from the Bekenstein-
Hawking thought experiment (2), living in a 4-dimensional space-�me and our n-sphere deriva�on as 
a mul�- and variable dimensional approach. Again we point out that the two s�ll deliver similar 
distribu�ons regarding the dependency of radius and dimension for the extremal n-spheres and 
Schwarzschild radius and bits for the classical black holes. This may have a deeper meaning. 

Looking for the “connector” as a simple factor, we divide equa�on (6) by (31) and square the 
quo�ent, resul�ng in: 
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This �me, the ra�o for q=n and q∞ is almost 137/µ and we wonder why we are so close to the 
reciprocal of the so-called Sommerfeld fine structure constant with α=1/137.035999177.  

In the limi�ng case q∞ we can even give an accurate solu�on to the quo�ent above, reading: 
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As before, assuming, as Bekenstein and Hawking did, that µ should not be too different from 1, we 
ask for a factorial connec�on of the two worlds, the one of the extremal n-spheres, n-tori and so on 
and the other with smallest informa�on units, bit, namely, in our 4-dimensions of space and �me. We 
find that 16*e*π=136.636 are already prety close to those ominous 1/α=137.0… Thus, with a  
µ=(1-ε)*π and an ε=0.0029207771434275253 equa�on (38) would have delivered us exactly 1 
over the Sommerfeld fine structure constant α. 

With the µ so close to π, there is a great mo�va�on to see an entanglement of the two worlds and to 
see it in form of Sommerfeld’s constant. 

What Does it Actually Mean to “Catch a Photon”? 
One op�on to explain the meaning of a µ different from 1 and thus, different from the Bekenstein 
assump�on, not connected to the red- or blue-shi� of the infalling photons, as applied above, 
thereby assuming that the observer is directly at the event horizon and thus, sees the photon’s 
wavelength in the moment when it falls into the black hole, could just be associated with the 
following geometric considera�on: 



 

 

Fig. 1: Photon encircling a black hole. The wavelength of the photon is exactly the circumference of 
the black hole and consequently does it par�ally leave it when doing its voyage. 

Let us take just one photon and assume that there is nothing in the black hole that could absorb the 
photon. Instead, the “poor thing” is just circling around the event horizon as shown in figure 1 
(orange line). As the photon has a wavelength and an amplitude, we demand two condi�ons: 

a) The wavelength should not be bigger that the circumference of the black hole so that the 
photon can finish one cycle of oscilla�on when having circled the black hole once. This shall 
be the new bit condi�on. 

b) The photon should not be seen anywhere from the outside when doing its circling. 

For illustra�on we show a set of photons not having the right size and thus, par�ally leaving the black 
hole (coming out of the event horizon, c.f. figure 2). 



 

 

Fig. 2: 4 Photons with a wavelength equal to the circumference of the event horizon encircling a 
black hole. It oscilla�ons (a�er all the photons are waves) bring them par�ally outside the black 
hole, which should not happen. In order to avoid this, the photons need to be slightly smaller. 

“Rigorous” Deriva�on of Sommerfeld’s Constant – A: 
The Sphere-Op�on 
The photon with the right size, which we here simplify with an oscilla�on of type: 

 ( ) ( )P A sinϕ = ⋅ ϕ , (39) 

would be one with a wavelength slightly smaller than the circumference of the black hole (figure 3). 

In order to obtain the correct wavelength, we need to evaluate the length of the curved photon 
which can be given via: 
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Here the func�on E[x] denotes the ellip�c integral of the second kind. Our defini�on of the length 
guarantees that for A0, which is associated with a completely flat wave or vanishing oscilla�on, we 
obtain the result of λ*π, which is just the circumference of the black hole, because a completely flat 
photon does not anywhere s�ck out of the event horizon. 

 

Fig. 3: Two photons encircling a black hole. Now the wavelength of one photon (green) is a litle bit 
shorter than the circumference of the black hole so that it always stays inside when performing its 

circles behind the event horizon. The other photon’s wavelength (orange) is exactly the 
circumference of the black hole and consequently it does not always stay inside when doing its 

voyage. We assume that this second op�on should be ruled out by a proper choice of µ. 

In any other (normal) case, we have to demand µ to be: 
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which gives us the amplitude: 

  0.10836541304457664A = ± , (42) 
and the final formula for the deriva�on of the fine structure constant as follows: 
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Of course, this is not a rigorous, which is to say fully theore�cal, deriva�on of the constant as it 
required the empirical calcula�on of the photon’s amplitude, where, not having any informa�on 
about its natural value, we needed to plug in the fine structure constant to make everything fit. If, 
however, we would be able to derive also the amplitude in a first principle, rigorous manner, our task 
of obtaining Sommerfeld’s constant in a completely analy�cal way would be complete. 

Maybe this will be possible by applying our solu�on to the photon [20, 21]. 

Extension to Cases of q≠n 
It needs to be pointed out that our “rigorous” deriva�on from above is restricted to the situa�on 
where de facto one bit can be coded by one dimension. In non-Bekenstein cases, meaning where we 
are not dealing with Black holes, we may need more dimensions to actually store one bit. Let us 
assume we require k dimensions for this process. In this case the equa�on (43) changes as follows: 
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Now, with the system poten�ally being more complex than a black hole, the photon can probably be 
absorbed in a proper way and would not need to circle the object, which means that we do not need 
the factor π in the denominator. Choosing k=3 as an example, we find µ to be: 

 1.0441389205244094µ = . (45) 

“Rigorous” Deriva�on of Sommerfeld’s Constant – B: 
The Spheroid-Op�on 
Now we assume the photon-absorbing dimensionally extremal system to be not perfectly spherically 
symmetric and apply our result for the n-p-extremal spheroid (36). Evalua�on of the effec�ve 
(average) radius over the whole volume would be done via: 
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whereby we dis�nguish the two op�ons of the effec�ve radius for all dimensions rn-eff and the 
effec�ve radius for just the β-dimensions rp-eff. Choosing p=n-const it does not mater which one of 
the effec�ve radii we chose for our limi�ng procedure in comparison with the Bekenstein-Hawking 
experiment, because in the limit for n∞ we obtain the same result, namely: 
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This leads us to a simple µ=π with the assump�on of the circling photon (figures 1 and 2) but without 
the need for any discussion about the width of a photon and the constant: 

 n 0.9985385435007366C = ± . (48) 

Extension to Cases of q≠n 
As before considering the non-Bekenstein case, meaning where we may need more dimensions to 
actually store one bit and assuming that we require k dimensions for this process the equa�ons (47) 
change as follows (again se�ng p=n-const which now changes to p=k*n-const): 
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Here, too, we assume that the system, being more complex than a black hole, can absorb the photon 
in a proper way and the poor thing would not need to circle the object, which means that we do not 
need the factor π in the denominator. Hence, we have µ=1. Choosing k=3 as an example again, we 
find Cn to be: 

 n 1.0218311604782904C = ± . (50) 

Conclusions 
We have derive the fine structure constant α as connector between the current model of science, 
seeing reality of something inside a 4-dimensional space-�me and a mul�-dimensional concept with 
also the dimensionality itself being subjected to a general varia�onal, extremal principle. 

Thereby we applied the Bekenstein-Hawking thought experiment, where photons are swallowed by 
black holes in a bit-wise manner, in two ways: 

a) The classical picture, just as Bekenstein and Hawking did 
b) As dimensionally extremal spheres or spheroids. 

and derived α as a ra�o of the two descrip�ons of the same process.  

With this we were able to give the fine structure constant as a number consis�ng of natural 
mathema�cal constants in the following form: 
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In other, non-black-hole-like cases, where we can assume systems of higher complexity and 
poten�ally higher numbers of dimensions being of need to code one bit than in black holes, we end 
up with the following equa�on: 
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, (52) 

where k gives the numbers of dimensions being of need to store one bit. 



 

Appendix: About the Dimensional Size of Systems 
In classical systems science there is no way to derive the necessary dimension of a system in a truly 
fundamental and neutral (mathema�cally based) manner. Thus, systems are o�en “defined” as it 
pleases the creator of the simula�on or as there are restric�ons in ability and calcula�on power for 
the “digital twin” of the natural system one intends to model. As this holds for any system, this is also 
true – of course – for the unconscious or conscious mind and thus, of great interest here. 

We start with the conjecture that not just the system’s inner proper�es and corresponding governing 
equa�ons but also the system’s size (number of degrees of freedom or dimensions) can be derived 
from a suitable minimum principle. Our star�ng point shall this �me be the Einstein-Hilbert ac�on 
with a generalized Lagrange density func�on [ ]R RΦ  and a yet undefined varia�on, which we write 

as follows: 

 [ ]( )n
? ? R

V

W 0 d x g Rδ = = δ − ⋅Φ∫ . (53) 

Please note that we could also write this for a scaled metric tensor as elaborated in the previous 
appendices in order to work out the connec�on to quantum theory, respec�vely, in order to make it 
show itself directly via a set of wrapping and wave func�ons Fi[fi] and fi within the usual varia�onal 
calculus. 

In order to adjust undefined parameters and finalize the character of the varia�onal task (52), we 
intend to consider a fundamental problem and here determine the size of a black hole in a 
completely new way. Classically the size of a black hole is given by the Schwarzschild radius, which 

itself is determined by the mass m of the black hole via: 2

2
s

m Gr
c
⋅ ⋅

=  (G… Newton’s constant, c… 

speed of light in vacuum). This Schwarzschild radius, however, was never derived from a first 
principle, but was adjusted as a parameter to the Schwarzschild metric [14] in order to give the 
correct limit to the Newton gravita�onal law. 

Here now we want to derive the Schwarzschild radius via a suitable version of (52). In order to do so, 
we first need to repeat Bekenstein’s thought experiment of black holes. 

The Bekenstein Bit-Problem 
One of the most famous and equally puzzling problems in General Theory of Rela�vity is the 
Bekenstein-Bit problem, where it was found that black holes can store informa�on, but so far it is 
been seen as a mystery how these objects actually do this. In [2, 7, 8] we have shown that bit-like 
informa�on is been stored as dimensions and that each bit becomes one dimension. For convenience 
we are here repea�ng parts of the original evalua�on. 

In the early seven�es J. Bekenstein [3, 4] inves�gated the connec�on between black hole surface area 
and informa�on. Thereby he simply considered the surfaces change of a black hole which would be 
hit by a photon just of the same size as the black hole. His idea was that with such a geometric 
constella�on the outcome of the experiment would just consist of the informa�on whether the 
photon fell into the black hole or whether it did not. Thus, it would be a 1-bit informa�on. His 
calcula�ons led him to the funny propor�onality of area and informa�on. He found that the number 
of bits, coded by a certain black hole, is propor�onal to the surface area of this very black hole if 

measured in Planck area 2
P . In fact, the dependency how one bit of informa�on changes the area of 

the black hole (∆A) reads: 
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Thereby the deriva�on of this equa�on is performed as follows. At first we start with the assump�on 
that the photon’s right size should be a wavelength λ of the Schwarzschild radius rs. Knowing that the 
energy of the photon would be E=h*ν, with deno�ng ν the frequency and h giving the Planck 
constant, and plugging in the equa�on for Schwarzschild radius of the photon related mass change 
∆m (with reduced Planck constant   and the Newton constant G): 
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we can derive ∆A as follows: 
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Ignoring the extremely small second term in the last line, one could just assume our black hole to be 
constructed of many such bit surface pieces. Thus, we could write: 

 2 2 2 2 2
P s s Pq A q 32 4 r r q 8⋅ ∆ = ⋅ ⋅ π ⋅ = ⋅ π ⋅ ⇒ = ⋅ ⋅ π ⋅ 

, (57) 

where rs gives the radius of the black hole. We see that our black hole radius is propor�onal to the 
square root of the bits q thrown into it. 

Now we want to compare the dependency rs[q] with the radii rmax[N] resul�ng in maximum volume of 
n-spheres for a certain number of space-�me dimensions N=n+1. 

 

 



 

 

Fig. A1: Radius rmax for which at a certain number of dimensions the n-sphere has maximum volume 
in dependency on N=n+1 compared with the increase of the Schwarzschild radius rs of a black hole 
in dependence on the number of bits q thrown into it. We find that q=N=n+1. As examples we pick 
the situa�on with a radius slightly bigger than 1.5 (whatever unit). We obtain maximum volume for 
a sphere in 15 dimensions (orange doted line). Picking a radius slightly below 1, however, gives us 

a 6-dimensional sphere which can have maximum volume at such a size (green doted line). 

 

We find a perfect fit (s. figure A1) to the rmax[N]-dependency for q=N with the following func�on: 

 ( ) 2 2
s P0.014948 0.395r U q ; U 81244= ⋅ = ⋅ π ⋅+ ⋅ 

, (58) 

where U denotes a unit-factor which was set U=1 in figure A1. 

Our finding does not only connect the intrinsic dimension of a black hole with its mass respec�vely its 
surface, but also, at least par�ally, gives an explana�on to the hitherto unsolved problem of “what 
are the micro states of a black hole giving it temperature and allowing it to store informa�on”. 
According to the evalua�on in this sec�on, these microstates are just various states of dimensions 
realized within the black hole in dependence on the number of bits it contains (and thus, its mass). 
The bigger the number of bits, the higher the intrinsic dimensions the black hole has. In fact, the 
connec�on even is a direct one and only seems to deviate from the simple direct propor�onality for 
very low numbers of masses1, respec�vely Schwarzschild radii rs, respec�vely numbers of bits q the 
black hole has swallowed. 

This finding also gives us a direct connec�on between a principle mathema�cal law (the maximum 
volume as func�on of the dimension for a given radius of an n-sphere) to the number of bits a black 

 
1 Besides, this deviation is also suggested by the Bekenstein finding summed up in equation (54), where we 
could assume the second term to become of importance at lower numbers of rs. 



 

hole contains, to the mass or Schwarzschild radius of this very black hole and the number and 
character of microstates the black hole actually uses to internally code the bits. 

It has to be pointed out that the expression “intrinsic dimension” truly stands for the part of space for 
r<rs, which is to say, the space behind the event horizon. As for the outside, the solu�on of a 
Schwarzschild object in n+1-dimensional space-�mes is given via: 
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As we find that the Newton laws of gravity, however, require N=4, it has to be assumed that in a 
region near the event horizon the dimension of the black hole decreases to the known 4 dimensions 
so that Newton’s laws of gravity are properly mirrored to us (as outside observers). The 
corresponding deriva�on was given in [8] (chapter 11). 

A System-Immanent Scale 
Note: the correct solution for the evaluation of the Schwarzschild radius rs as function of the bits 
thrown into a black hole object (if using the results from [15]) would be:  

 ( )( )s Pr 2 1= ⋅ ⋅ ⋅ + ⋅ + π q q q ! (60) 

We find a perfect fit to the n-spheres with maximized volume to a given radius (dots in figure A1) with 
a Planck length of P 0.07881256452824544= (s. figure A2, which is almost perfectly equal to the 

fit in figure A1).  



 

 

Fig. A2 (Please note that we have applied a slightly different fit than it was applied in fig. A1): 
Radius rmax for which at a certain number of dimensions the n-sphere has maximum volume in 

dependence on N=n+1 compared with the increase of the Schwarzschild radius rs of a black hole in 
dependence on the number of bits q thrown into it by using (59). We find that q=N=n+1. 

 

But what would be the unit for this Planck length?  

Well, it was already shown in [8] that by using the results from [15] and the “volume integral” (52)
with: 

 n
n n

V

W 0 d x gδ = = δ −∫ , (61) 

for n-spheres (in [15] with T[n]=1): 
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we have evaluated the very dimension n to which at a given radius rs the volume of a n-sphere has a 
maximum. The rs are put into the calcula�on as plain “natural” numbers, meaning an rs=1 is just a 1 
and that is it. We might name this unit a “mathema�cal meter” or just “mams” (plural for 
“mathema�cal meters”). Transforma�on to our usual units, like meters, requires the introduc�on of a 
factor T[n]=Un.  

With 
[ ]
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( ) 35
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, for instance, we can easily change to our 

meters. Nevertheless it appears somehow astonishing that there seems to exist a fundamental 
“natural” unit, being completely based on a mathema�cal -  geometrical - extremal principle (the 



 

maximum volume of n-spheres as func�ons of their dimensions for certain radii). It is also interes�ng 
that these dimensions are so nicely correlated to the number of bits a black hole has swallowed. In 
fact, using the unit of mams, the number of spa�al (n-sphere) dimensions is perfectly equal to the 
number of swallowed bits. 

Thus, in the case that black holes would in fact store their content as dimensions and the Einstein-
Hilbert-Ac�on being extended with respect to the number of dimensions in addi�on to the metric, 
we immediately also get an absolute scale for our black hole system in which the number 1 is “made 
out” of 12.6883 Planck length and where a 3-sphere has a radius of 0.6969979737167096 mams. 

Back to the Op�mum Size Ques�on for any System 
When observing the integral in (52), we see that – in principle – we seek for a maximum volume for a 
given dimension or, taking the radius of a Schwarzschild object, look for the corresponding dimension 
making the volume integral an extremum. As the determinant g of the Schwarzschild metric is just 
equal to the one of a n-sphere with the addi�onal �me-dimension to be integrated, we can easily use 
the volume integral result of n-spheres, which reads: 

 
( )

( )N n

2

1V
2

2

V + ⋅
+ 

Γ 

=


 

=

n

nπ r
n

. (63) 

Please note that due to the �me-coordinate t we have Vn+1 instead of Vn. Thereby the integra�on via t 
in (62) is assumed to be performed such that it would give 1. In general, we might take care about 
this part of the integra�on via a propor�onal constant T we could even consider to be n-dependent 
T[n] and thus, equa�on (61): 
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Now we evaluate the various dimensions for which, for a given radius r of the n-sphere, we would 
obtain extrema. The results were already given in figures A1 and A2. There we have illustrated the 
resul�ng rmax as func�ons of the dimensions N=n+1 (note: n=n-sphere dimension, N=t+n-sphere 
dimension). 

Now we just compare our findings with the original ques�on of extrac�ng a minimum principle for 
the dimensional size of a given system with our generalized star�ng point for the varia�onal task (52) 
and conclude that: 
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Thus, the determina�on of the op�mum size of a system we intend to consider, inves�gate or analyze 
can just be found by a dimensional varia�on of the volume integral of that very system. In the case of 
spherical symmetries, this then leads to equa�ons of the form: 
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Along the way we also can extract suitable fundamental scales for our system. 

The First Bit Requires the Highest Mass = The First Thought is the Most Difficult 
From (59) we can now extract the minimum Schwarzschild radius for the storage of one bit, which 
would be equal to 5.508 Planck length and corresponds to 11.16 �mes the Planck mass. This is a huge 
amount of mass and thus, also energy, one needs to safely store just one single bit. Luckily, the 
situa�on improves the more bits one intends to store, as for instance the one millionth bit only 
requires about 5.5*10-3 Planck masses. Please note that, of course, one might also store bits within 
spin arrangements of electrons. Then a 1-bit informa�on would be connected with a single electron, 
whose mass and spin energy is many magnitudes below the Planck mass. This spin storage, however, 
cannot be seen as a storage of a classical binary bit, because in fact it resembles a quantum bit. 
Apparently, the safe storage of a pure and truly binary informa�on requires an - almost - macroscopic 
massive structure. Here the black hole probably provides the smallest possible mass ensemble there 
can be to arrange such a storage for a certain bit. The limit is given at about 11 �mes the Planck mass. 
Only from this mass onward black holes can store binary informa�on… at least un�l the Hawking 
radia�on leads to a destruc�on of our black hole 1-bit storage system.  

And what would then happen to the stored informa�on? Well, this brings us to the ques�on how safe 
is informa�on within our universe [16]. 

Byproducts: A few Fundamental Ques�ons 
About the Relativity of System-Scales 
We saw that – similar to the Bekenstein or Bekenstein-Hawking problem (see reference [17]) – we 
add bits via dimensions to our metric structure (here a black hole). Assuming our metric system to be 
a black hole (which we here only use to have a simple as possible math), we can even obtain a ra�o of 
the black hole’s radius rs to the smallest structure this black hole can resolve. Taking the result for P - 

the Planck length - from the Bekenstein thought experiment, we find the ra�o between the 
Schwarzschild radius rs of a black hole and P : 

 ( )( )s

P

r 2 1= ⋅ ⋅ + ⋅ +


π q q q . (67) 

In our universe the Planck length P  is considered to be the smallest length possible to resolve. What 

if the ra�o (66), we found for black holes, actually is a more fundamental law? At any rate, it appears 
logic to assume that more bits could be coded or stored by an object of bigger size and smaller 
internal structure, thereby leaving more op�ons to describe something with these structures. Thus, 
the equa�on (66) makes intui�ve sense, but could it also be just the other way round? Could it be 
that to an object of given size the number of bits (being equivalent to its dimensions as we see in 
figures A1, A2) it contains, determines the smallest scale – the Planck length – of the object, too? 
And, if referring to the “Mathema�cal Psychology”, the system presents a thinking en�ty, does this 
also mean that thoughts have a physical scale? 

From inside and taking the Planck length as measure, the increase of informa�on to this very object, 
subject or en�ty would look like an increase of its size. Now assuming the inside of the black hole to 



 

be a general system, the inhabitants of this system may see this system as their very own universe 
and would register the increase of informa�on as a growth of their “universe”, measured in the 
Planck length of that very system-universe. When learning, we seem to feel the increase of mind. 
May be this percep�on is just what is actually really going on. 

 

Does More Information Always Mean More Mass? 
Quantum computer scien�sts have already pointed out that, with our current way of storing 
informa�on, we will one day reach a limit with respect to the number of atoms we can apply for the 
storing process and the energy being needed to keep the informa�on stable (maintained). Ci�ng from 
the abstract of [18], we have the following situa�on: 

“Currently, we produce ∼1021 digital bits of information annually on Earth. Assuming a 20% annual 
growth rate, we estimate that after ∼350 years from now, the number of bits produced will exceed 
the number of all atoms on Earth, ∼1050. After ∼300 years, the power required to sustain this digital 
production will exceed 18.5 × 1015 W, i.e., the total planetary power consumption today, and after 
∼500 years from now, the digital content will account for more than half Earth’s mass, according to 
the mass-energy–information equivalence principle. Besides the existing global challenges such as 
climate, environment, population, food, health, energy, and security, our estimates point to another 
singular event for our planet, called information catastrophe.” 

It has to be pointed out that when looking for possible inner Schwarzschild solu�ons [19], we also 
found that there are solu�ons, where the mass decreases with the increase of the object size. It may 
well be that such strange states are not only realized in black holes, but could perhaps also help to 
overcome our future informa�on storage problem. 

Generalization to General Spheres? 

In the sub-sec�ons above we saw that, when taking the equa�on for the Laplace length P  from the 

Bekenstein thought experiment [3, 4]), we find the following ra�o between rs (Schwarzschild radius of 
a black hole) and P  (c.f. equa�on  (66)): 

 ( )( )s

P

r 2 1= ⋅ ⋅ + ⋅ +


π q q q . (68) 

Most interes�ngly, we also found that the solu�on to the extremal volume problem for a fixed radius 
rf for n-spheres results in the same dependency when varia�ng with respect to the number of 
dimensions of those n-spheres. We obtain (see dots in figures A1 and A2) excellent fits, when 
applying an approach like:  

 ( )( )fr L n n 1 nπ= ⋅ ⋅ + ⋅ + . (69) 

Thereby we have the characteris�c (system-dependent) length scale L. 

This automa�cally gives us a connec�on between the size-parameter rf of any system of spherical 
symmetry and its theore�cal capability to store informa�on. A perfect mathema�cal n-sphere 
thereby follows the rule (68) almost perfectly, while other systems may do so only from certain 
cri�cal sizes onwards, but, nevertheless, we think we can draw the conclusion that the informa�on 
storage capacity of given systems – if showing enough spherical symmetry – can be extracted from 
(68). Then the structural size-parameter rf determines the number of storable bits n in dependence 
on the system-immanent length parameter L. 



 

From this, one even may deduce that rf and L could be subs�tuted by other system characteris�cs. 
While in (68) their dimension is length, we should not exclude mass, �me, charges, energies and so 
on. 

Other Geometries 
The simplest generaliza�on of (64) can be given for an ensemble of N tori of dimensions nj for the 
sub-nj-spheres of the individual torus. The volume integral would then yield: 
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This could be further generalized for a sum of tori and leaves us with a great variety of pure volume 
(radii) and dimension varia�ons. 

As tori can be seen as combined nij-spheres with nij giving the dimension of the sub-spheres 
construc�ng each torus (64) can be generalized as follows when assuming N tori with dimensions ni 
and sub-spheres of dimensions nij: 
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Assuming that also complex symmetries of systems could be constructed out of sums of tori, we 
realize that the varia�onal op�ons are manifold: 
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and leave us with a great variety of op�ons for an op�mum sized system in the case of complex 
symmetries. 

Consequences from the Bekenstein Thought Experiment Regarding the  
Solu�ons to the Quantum-Einstein-Field-Equa�ons 
In [2, 8] we have shown that the classical n-dimensional Schwarzschild solu�on could be applied to 
construct internally structured n-dimensionally black holes, while outside we s�ll have the usual 4-
dimensional solu�on from [14] with the classical Schwarzschild metric. This, however, would not 
explain how the black hole can code any informa�on.  

With the help of the new metric solu�ons evaluated in [19], namely, to just give an example, in the 
three-dimensional case with coordinates t, r and an angle: 
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(please note that r has become an angle while t took over the posi�on of the radius), 
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(this represents a shell-like object) we want to solve also this problem. A generaliza�on of this type 
solu�on is been given in appendix N. Thereby, we found that the Schwarzschild singularity could be 
avoided (fig. A3). 
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Fig. A3: “From the classical Schwarzschild solu�on to a Quantum Black Hole” [19] 

At first, however, we should note that also the n-dimensional Schwarzschild solu�ons from [8], 
sec�on 3.8 (c.f. solu�on (58) in here) would provide plenty of op�ons to code informa�on, because 
there are enough degrees of freedom regarding the thicknesses of the individual x-dimensional layers 



 

of the onion-like Schwarzschild object, which was proposed there (see also [19]). Similar assump�ons 
could be made for the Robertson-Walker approach introduced in [19], but apart from again 
men�oning the onion-layer structured ogre-mind from the movie Schreck, we will not further 
consider these possibili�es in here. 

In the case of photonic inner solu�ons as also suggested in [19] one might assume some kind of 
standing waves inside the black hole, but as we currently don’t have the math to realize such 
structures, we postpone the inves�ga�on of this possibility. 

Thus, we here concentrate on solu�ons (72), (73) as poten�al inner solu�ons to a black hole. As we 
see that the parameter ρ clearly is a length, we want to derive its proper�es. For the general case this 
was already done in appendix N. Nevertheless, we repeat it here for the se�ng (72) and (73).  From 
basic quantum theory we know that a par�cle at rest has the �me dependency: 
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2m ci t
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= ⋅ , (75) 

with m giving the rest mass of the par�cle and   deno�ng the reduced Planck constant. Comparing 
with the f[t]-func�on from the metric solu�on (73), we find: 
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Here P  denotes the Planck length. By inser�ng (66) into (76) we obtain: 
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Thus, while for a black hole the number of bits thrown into it leads to an almost perfectly square-
root-like increase of the Schwarzschild radius in accordance with equa�on (66), the ρ-parameter of 
the (73)-objects decreases with the number of bits. (73)-objects would have the same ρ-parameter, 
which we may see as a size, as a black hole only for Schwarzschild radii rs equal to the Planck length. 
In other words, for growing black holes with radii bigger than the Planck length the corresponding 
equally heavy (73)-objects would be significantly smaller than the black holes. 

So, we ask: Could the (73)-objects be used as building blocks for the black holes, residing inside it, 
which is to say behind the event horizon? 

Assuming that the black hole’s surface is made out of metric spherical objects of the type (73) and 
further assuming that each of these objects in the surface of the black hole, which is to say at r=rs 
(which also happens to be the event horizon), requires its own surface space of something like Cρ*ρ², 
we can directly evaluate the number of such (73)-objects, we from now on name ρ-spheres, are 
residing inside the event horizon with increasing numbers of bits thrown into the black hole. 
Assuming that the mass is always addi�ve, the total mass m of the black hole must then be 
distributed among the N ρ-spheres, which changes (76) to: 
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Also having to sa�sfy the following equa�on for the N ρ-spheres si�ng on the surface, we have to 
solve the following equa�on: 
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Wie realize, that such a structure could not be used to store any informa�on, because the number of 
ρ-spheres should have to increase with the number of bits and not decrease as it does. Things are 
improving the moment we allow a combina�on of ρ-spheres and (72)-objects (the later we shall call 
t-spheres) to make up our inner black hole. We propose the following (simplest of the many 
possibili�es) structure: 

A) In the center of the black hole sits a ρ-spheres of “radius-parameter” ρ given in (76) and thus, 
2
P

sr
ρ =



, which is to say, the bigger the Schwarzschild radius rs of the black hole, the smaller 

its core. In fact, for infinite masses the core would become a singularity. 
B) This single ρ-sphere core is surrounded by t-spheres (72) and the number of those t-spheres, 

which a black hole can bind, is propor�onal to the number of bits the black hole has 
swallowed.  

C) Taking the Bekenstein-condi�on, this demands an average size for the t-spheres, being bound 
by the black hole or the black hole’s surface, to be such that its projected surface would be 

equal to 2
P . In other words, we could assume the average radius of the t-spheres (the ones 

bound to the black hole) to be equal to /P π . 

With such a structure, it is very well possible that in fact black holes have no singularity and follow 
our scheme of inner-outer-solu�on, but one cannot detect any difference to the classical 
Schwarzschild solu�on from the outside, because the inner-parts are always hidden behind the event 
horizon. 

But does this help us to solve the Bekenstein informa�on problem? 

Yes, it does. 

We can imagine many t-sphere objects (of number N=q) si�ng on the surface of the black hole. As 
the generalized solu�on to (72) would read: 
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we see that each t-sphere could not only store informa�on via a certain sign within the exponent, but 
also via the free parameter B. 

The Size of the Electron? 
Applying (78) and assuming a ρ-sphere-structure for the electron, gives us: 

 

13 23
P

2 13
P

s

s

s

s

r

r

N
2 G 2 N r rG

N

c 1 1 c

1.93 10 mete
r N

−

−

⋅  = ⇒ = ⋅ = ⋅ρ
⋅ ⋅ ⋅ ⋅ρ ⋅

ρ
⋅

 
×

⇒ = =









. (82) 

Se�ng N=1 we would end up with a ρ-sphere of  131.93 10 meter−= ×ρ for the “pure” or “naked” 
electron. 
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