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1 Abstract 
Star�ng from a scaled metric we were able to derive Quantum Gravity equa�ons containing the 
vacuum Einstein-Field-Equa�ons [A1, A2] for the metric tensor and the classical (rela�vity-
compa�ble) Quantum Equa�ons for the volume part of the metric [A3, A4, A5, A6, A7, A8]. This 
brings Quantum Theory and Einstein’s General Theory of Rela�vity together. 

When taking the resul�ng Quantum Gravity equa�ons and assuming big numbers of degrees of 
freedom, we obtain the classical Eikonal or light-par�cle equa�on [A9], which is known for centuries. 
It describes the propaga�on of light rays in geometrical op�cs. Classically, it can be obtained from 
wave op�cs via a limi�ng procedures for wave numbers going to infinity. Interes�ngly, when applying 
the same technology directly onto our Quantum Gravity equa�ons we do not obtain the classical 
Eikonal, but a slightly more complicated equa�on… s�ll being similar to the classical one in character 
and spor�ng its non-linearity. Only certain addi�onal condi�ons, like the assump�on of a volume-
restricted varia�on withing the Einstein-Hilbert ac�on, gives the classical outcome. 

The results of this paper lead us to a connec�on between the wave number of certain solu�ons for of 
a system and the later’s dimensionality. 

1.1 Abstract References 
[A1] D. Hilbert, Die Grundlagen der Physik, Teil 1, Gö�nger Nachrichten, 395-407 (1915) 

[A2] A. Einstein, Grundlage der allgemeinen Rela�vitätstheorie, Annalen der Physik (ser. 4), 49, 
769–822 

[A3] N. Schwarzer, "The World Formula: A Late Recogni�on of David Hilbert ‘s Stroke of Genius", 
Jenny Stanford Publishing, ISBN: 9789814877206 

[A4] N. Schwarzer: “The Math of Body, Soul and the Universe”, Jenny Stanford Publishing, ISBN 
9789814968249 

[A5] N. Schwarzer, "The Quantum Gravity War - How will the Nearby Unifica�on of Physics 
Change Future Warfare?", Jenny Stanford Publishing, ISBN: 9789814968584 

[A6] N. Schwarzer, “Mathema�cal Psychology – The World of Thoughts as a Quantum 
Space-Time with a Gravita�onal Core”, Jenny Stanford Publishing, ISBN: 
9789815129274 

[A7] W. Wismann, D. Mar�n, N. Schwarzer, “Crea�on, Separa�on and the Mind, the Three 
Towers of Singularity - The Applica�on of Universal Code in Reality”, 2024, RASA 
strategy book, ISBN 979-8-218-44483-9 

https://en.wikipedia.org/wiki/Annalen_der_Physik


 

[A8] N. Schwarzer, “Fluid Universe – The Way of Structured Water; Mathema�cal Founda�on” , 
2025, a Jenny Stanford Pub. mathema�cal founda�ons book project 

[A9] Hamilton, William Rowan (1828). "Theory of Systems of Rays". Transac�ons of the Royal Irish 
Academy. 15: 69–174. 
see also: htps://lp.uni-goe�ngen.de/get/text/6216  

  

https://lp.uni-goettingen.de/get/text/6216


 

2 Introduc�on 
2.1 The Classical Eikonal Equa�on (e.g. [9]) 
Using the following approach for a wave func�on f: 
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and se�ng it in the following wave equa�on: 
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Making the exponent dependent on the wave number in the following way: 
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yields: 
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For very large k the k-linear and the k² terms become dominant and we obtain: 
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Here we have with: 
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the so-called Eikonal equa�on for l, the solu�on of which determines via: 
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the func�ons A and a. The symmetry of the metric tensor allows us to simplify (9): 

 

( )

cd ab
ab,cab cd

,a ,b ,a ,b ,ab ,d ,c

cd ab
ab,cab cd

,a ,b ,a ,b ,ab ,d ,c

g g g
0 g 2A a L l A L l l L l L l g

2

g g g
0 g L l l L 2 ln A a l l l g

2

   
′ ′ ′′ ′ ′ = ⋅ ⋅ ⋅ + ⋅ ⋅ + ⋅ + ⋅ +      

   ′′′ ′ = ⋅ + ⋅ ⋅ ⋅ + + +      

. (10) 

2.2 The “Theory of Everything” 
We start with the following scaled metric tensor and force it into the Einstein-Hilbert ac�on [1] 
varia�onal problem as follows: 
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Here G denotes the determinant of the metric tensor from (11) and R* gives the corresponding Ricci 
scalar. Performing the varia�on with respect to the metric Gαβ results in: 
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and shows us that we have not only obtained the classical Einstein Theory of Rela�vity [2] (see boxed 
terms exactly giving the Einstein Field Equa�ons in vacuum), but also a set of quantum field equa�ons 
for the scaling func�on F, clearly playing the role of the wave-func�on. It was shown in our previous 
publica�ons [3, 4, 5, 6, 7] that these addi�onal terms are quantum equa�ons fully covering the main 
aspects of rela�vis�c classical quantum theory. So, we conclude, that we indeed have a Quantum 
Gravity Theory or “Theory of Everything”, as one also calls it, at hand. 

2.3 “Weak Gravity” and Linearity – The Transi�on to the Classical Quantum Theory 
It was shown in [3, 5, 6, 7] that the so-called “weak gravity” condi�on: 
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together with a se�ng for the scaling func�on F[f] as follows: 
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leads to a significant simplifica�on and scalariza�on of the quantum gravity field equa�ons (12), 
namely: 
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This equa�on is completely linear in f, which not only has the characteris�cs of a quantum wave 
func�on, but – for a change – gives us the opportunity to metrically see what QUANTUM actually 
means, namely, a volume jiter to the metric of the system in ques�on… at least this is one quantum 
op�on, because we have already seen others, like the perturbated kernel (e.g. see [7]). 

Interes�ngly, for metrics without shear elements:  

 
00

ij ii,i

n 1n 1

g 0
g ; g 0

0 g − −

 
 = = 
 
 



  



, (16) 



 

and applying the solu�on for F[f] from (14) the deriva�ve terms in (15), which is to say: 
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converge to the ordinary Laplace operator, namely: 
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We recognize the rela�vis�c Klein-Gordon equa�on. 

Thus, in the case of n>2 we always also have the op�on for a constant (broken symmetry) solu�on of 
the kind: 
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In all other cases, meaning where f 0f C≠ , we have the simple equa�ons: 
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A cri�cal argument should now be that this equa�on is not truly of Klein-Gordon character as it does 
not contain neither poten�al nor mass, but the first author of this paper has already shown that this 
problem is easily solved by adding addi�onal dimensions carrying the right proper�es to produce 
masses and poten�als due to entanglement (e.g. [3 – 7]). 

3 Theory 
3.1 Some General Considera�ons 
3.1.1 Using the Scaling Func�on F[f] 
Inser�ng a wrapping func�on F[f] and a bit of reordering of (12) leads to: 
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We recognize two non-linear terms in the last line. With the se�ng  
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we can get rid of one of them, resul�ng in: 
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Interested in ge�ng rid of the second non-linear (scalar) term in (21), we have to set: 
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In this case (21) yields the following field equa�ons: 
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3.1.2 The Wave Approach 
Star�ng with the simple case of metrics of constants, we obtain the following from the general 
quantum gravity equa�on (12): 



 

 

( )( )

( ) ( )( )

( ) ( )

( )( )
( ) ( )( )

( ) ( )

ab
, ,ab

cd
, , ,c ,d2

ab
,a ,b

2

ab
, ,ab

cd
, , ,c ,d

,a ,b ab
,ab

1 F F g gn 22F
10 GF F g F F g3n 6 4 n4F

gg F FF
n 6n 1 F 4F 2

F F g gn 2
1 F F g F F g3n 6 4 n2F

F F
F g gn 6n 1 4F

αβ αβ

αβ
α β αβ

αβ

αβ αβ

α β αβ

αβ

 − +− 
 
 = + δ⋅ +− − 
 

 ⋅∆ + + ⋅− −   
 − +−

= + ⋅ +− −

⋅ 
+ + ⋅−−  

 

( ) ( )

ab
,ab ,

cd
, , ,c ,d

G
2F

F g g F
G

n 2 1 n 7 2F3F F g F F g
2F 2

αβ

αβ αβ αβ

α β αβ


 

δ 
 
 
 
 


 −

δ = −   −+ ⋅ +    

. (26) 

In some cases it might be good to have the inner terms ordered with respect to the true tensor and 
the scalar part (the later mul�plied with the metric tensor gαβ): 
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Now we assume the following type of solu�on: 
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The corresponding deriva�ves read: 
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This makes (27) to result in: 
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Now we demand a[x,y,…]=l[x,y,…], which yields: 
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and can be simplified to: 
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We see, that with the – apparently comfortable - se�ngs: 
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we would obtain a linear differen�al equa�on in l: 
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Unfortunately, the only solu�on we can find is the trivial one with F being a constant via: 
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Going back to (33) and incorpora�ng F, we can reshape the last line as follows: 
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With the two condi�ons: 
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we would avoid the non-lineari�es, ending up with (35) again. The only solu�on we can find here, 
however, is the ones we already know (e.g. [3 -7]) from our simple wrapping func�on F=F[f], now 
with (c.f. (22) and (24)): 
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Going back to (31), not demanding a[x,y,…]=l[x,y,…], results in: 
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Aiming for the Quantum Gravity equivalent of the Eikonal equa�on, we adjust F as follows: 

 ( ) [ ] [ ]( ) [ ] [ ]i k L l x,y,L x,y,F F F A a x, y, eA x, y, ef
 ⋅ ⋅   = = = ⋅⋅  









, (43) 
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thereby changing (42) as follows: 
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The remaining equa�on would then read: 
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We recognize the complementary to the classical Eikonal “side-kick” (9) to be: 
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3.1.2.1 The General Case 
For completeness we now consider the general metric case, leading to: 
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Ordering with respect to the powers of k yields: 
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Summing up the coefficients for the powers of k gives us: 
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Consequently, for big k, we would obtain the following Eikonal equa�on: 

 ( )ab
,a ,b , ,0 l l g g n 3 2l lαβ α β= − + . (52) 

and the quantum gravity equivalent for the classical equa�on (9) as follows:  
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Interes�ngly, the gravity terms containing the Ricci curvatures (the vacuum Einstein field equa�ons; 
see boxed terms): 
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are becoming recessive. 

It should be pointed out that, as before, with a suitable choice for L, one could get rid of the term 

, ,l lα β  in the quantum gravity Eikonal equa�on (see next sub-sec�on). This however, will make the 

func�on L k-dependent and compromises our Eikonal deriva�on from above. 

3.1.2.1.1 The Other “Eikonal” 
Taking (21), we have seen in [8] that we have a variety of op�ons to obtain various n-dependencies 
for our wrapping func�on F[f]. Leaving F open and assuming that it does not depend on n, results in: 
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This quadra�c polynomial in n shows the following dominant term as limit of n∞: 
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We recognize the scalar Eikonal equa�on reading: 

 ab
,a ,b0 g F F= ⋅ . (57) 

This equa�on is by far less restricted than (52) and it also much beter mirrors the classical one (8). 
De facto, when remembering the b²-term can be easily constructed via a suitable addi�onal 
dimension (see sec�on “The Classical Eikonal Equa�on Derived From a Quantum Gravity Origin”), it 
actually is the classical Eikonal equa�on. 

While as before the Ricci-curvature terms: 
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become recessive, we find the equivalent to the classical Eikonal-“side-kick” (9) via: 
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3.1.3 Special Considera�on of the Non-Linear Terms 
Reordering (45) with respect to the linear and non-linear terms in a and l, gives us: 
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With the se�ng for F of the kind: 
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(60) simplifies to: 
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With this F, not being dependent on the dimensionality n, we find an interes�ng situa�on when 
considering space and space-�mes with huge numbers of dimensions. In these cases the equa�on 
(62) evolves to: 
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It should be pointed out that we obtain the same result with any other F not depending on n. 

3.2 The Classical Eikonal Equa�on Derived From a Quantum Gravity Origin in the 
Classical Way 

Star�ng with (15) and applying the se�ng (43) for the func�on f as follows: 

 [ ] [ ]ii k L l x
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we obtain from (30): 
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Assuming huge k, the dominant term would be: 
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This is the quantum gravity derived Eikonal equa�on, but for those who miss the constant term in 
comparison to the classical Eikonal equa�on (8), we refer to [8], where it is shown how such a 
constant arises from just a another dimension. 

4 Consequences 
The classical Eikonal equa�on can either be obtained from the Einstein-Hilbert ac�on in the classical 
way, which is to say with an approach of the type (28) plus the assump�on of huge wave numbers k, 
from the full quantum gravity field equa�ons (12) by a volume restricted varia�on (weak gravity 
condi�on) (13) or via the assump�on of huge numbers of dimensions n. While in the later case no 



 

addi�onal condi�ons are of need, we have a variety of such in the first case. This is bit of a surprise, 
because classically the Einkonal equa�on is derived from a wave equa�on only via the assump�on of 
big k. With the Quantum Gravity star�ng point, however, when only taking the condi�on of big k 
(without the weak gravity condi�on), we’d end up with a non-classical Eikonal equa�on in the form of 
(52) (new and fully quantum gravity derived) in comparison with the much simpler form (66) 
(perfectly agreeing with the classical Eikonal form) for large n. 

It is very interes�ng that we obtain a classical equa�on of par�cles (par�cles of light) from the 
quantum gravity field equa�ons via a limi�ng procedure concerning the dimensionality of the system 
rather than the classical restric�on of the wave func�on approach (restric�on to big wave numbers). 
A�er all, there is no obvious connec�on between big wave numbers and high system dimensionality. 
Our biological/evolu�onary precondi�oning forces us to try and see connec�ons in cases where the 
results are equal and so, consequently, we also tend to intent to see such a connec�on here and ask 
“What could it possibly be that makes the two completely different limi�ng procedures to produce 
the same result?”. There seems to be no direct associa�on between high dimensionality of a system 
and big wave numbers for solu�ons within this very system. And in fact, there is no such connec�on 
(except that it gives the same limi�ng result from a quantum gravity standpoint)… or is there? Well, in 
systems of high dimensionality the likelihood for the observa�on of small wavelengths is probably 
higher, because a greater number of dimensions means a greater number of degrees of freedom and 
those can cover oscilla�ons the observer sees as concentrated or compac�fied on smaller ensembles 
of dimensions (manifolds), which apparently is equal to smaller wavelengths. 

S�ll, the rather different Eikonal equa�ons for big k (52) in comparison with the much simpler form 
(66) for big n, both resul�ng from the same Quantum Gravity star�ng point, shows us that there can 
be no perfect rela�onship between the two procedures. The equivalence in the outcome in the case 
of weak gravity is a triviality, because by restric�ng the varia�on to just the volume of the metric we 
have reduced the Quantum Gravity to just its quantum part and thus, a wave equa�on, which, de 
facto, is the classical star�ng point for the deriva�on of the Eikonal equa�on. Consequently, of course 
there can be no other outcome there when se�ng in a general wave of type (1) and approxima�ng 
the equa�on with respect to big k. That the same result is obtained from the full Quantum Gravity 
equa�ons via big n is a structural coincidence for n roughly playing the role in the full equa�ons, k is 
playing in the restricted (weak gravity) equa�ons. So, shouldn’t one conclude now that n can be seen 
as some kind of wave number or k as some kind of dimensionality? 

Yes and No! 

Yes, under the right circumstances (no internal structural varia�on of the metric but only volume 
varia�on), the wave number k is as global as the parameter n, because it affects always the whole 
volume or scaling func�on f, which entangles all dimensions and not just an internal manifold. 

No, when taking the full Quantum Gravity equa�ons as star�ng point the outcome for the limi�ng 
procedures for k (52) and n (66) are significantly different. 

We can prove this by inves�ga�ng sub-systems with chain-ordered or nested scaling func�ons Fi[fi] in 
the same way as we did it here for the global scaling or volume func�on. The interested reader can 
find the necessary math in [6, 7, 10] in connec�on with our quantum gravity considera�on of Hugh 
Everet’s mul�verse theory. 

  



 

5 Applica�ons 
As there are infinitely many systems with huge numbers of degrees of freedom, we can formulate an 
equa�on for the expecta�on value E[…] for possible applica�ons E[Applica�ons] as follows [11, 12]: 

 [ ]
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n n*n 4 4

Universe

d x g F Applications F
E Applications

d x g F F

⋅ ⋅ ⋅
= = ∞

⋅ ⋅

∫

∫
! (67) 

6 Conclusions 
We have demonstrated in this short paper how the classical Eikonal equa�on can be derived from a 
quantum gravity theory in a completely non-classical way. Thereby one only needs to assume a huge 
number of degrees of freedom or dimensions residing within the system of interest. The classical way, 
where a general wave approach is used and big wave numbers are assumed, does not produce the 
classical but a slightly more complicated Eikonal equa�on. In this case, only certain addi�onal 
boundary condi�ons, like the assump�on of a varia�on for the Einstein-Hilber ac�on being restricted 
to only the metric scaling or volume of the system, will bring the usual, classical result. 
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