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1 Abstract

Starting from a scaled metric we were able to derive Quantum Gravity equations containing the
vacuum Einstein-Field-Equations [A1, A2] for the metric tensor and the classical (relativity-
compatible) Quantum Equations for the volume part of the metric [A3, A4, A5, A6, A7, A8]. This
brings Quantum Theory and Einstein’s General Theory of Relativity together.

When taking the resulting Quantum Gravity equations and assuming big numbers of degrees of
freedom, we obtain the classical Eikonal or light-particle equation [A9], which is known for centuries.
It describes the propagation of light rays in geometrical optics. Classically, it can be obtained from
wave optics via a limiting procedures for wave numbers going to infinity. Interestingly, when applying
the same technology directly onto our Quantum Gravity equations we do not obtain the classical
Eikonal, but a slightly more complicated equation... still being similar to the classical one in character
and sporting its non-linearity. Only certain additional conditions, like the assumption of a volume-
restricted variation withing the Einstein-Hilbert action, gives the classical outcome.

The results of this paper lead us to a connection between the wave number of certain solutions for of
a system and the latter’s dimensionality.
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2 Introduction

2.1 The Classical Eikonal Equation (e.g. [9])
Using the following approach for a wave function f:

£ = f(A[X’y’.“]'eL[x,y,...]) _ AI:a[X,y,...]]-eL[l[x’y""]] , (1)

and setting it in the following wave equation:
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Making the exponent dependent on the wave number in the following way:
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For very large k the k-linear and the k? terms become dominant and we obtain:
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the functions A and a. The symmetry of the metric tensor allows us to simplify (9):
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2.2 The “Theory of Everything”
We start with the following scaled metric tensor and force it into the Einstein-Hilbert action [1]
variational problem as follows:

Guy =gy FUf] > 8W=0=5[d"xJ-G R’ (11)

%

Here G denotes the determinant of the metric tensor from (11) and R" gives the corresponding Ricci
scalar. Performing the variation with respect to the metric Gqg results in:
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and shows us that we have not only obtained the classical Einstein Theory of Relativity [2] (see boxed
terms exactly giving the Einstein Field Equations in vacuum), but also a set of quantum field equations
for the scaling function F, clearly playing the role of the wave-function. It was shown in our previous
publications [3, 4, 5, 6, 7] that these additional terms are quantum equations fully covering the main
aspects of relativistic classical quantum theory. So, we conclude, that we indeed have a Quantum
Gravity Theory or “Theory of Everything”, as one also calls it, at hand.

2.3 “Weak Gravity” and Linearity — The Transition to the Classical Quantum Theory
It was shown in [3, 5, 6, 7] that the so-called “weak gravity” condition:
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together with a setting for the scaling function F[f] as follows:
4
F[f]= Co(f+Cp)2 n=2 (14)
CF : efACf n=2

leads to a significant simplification and scalarization of the quantum gravity field equations (12),
namely:
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This equation is completely linear in f, which not only has the characteristics of a quantum wave
function, but — for a change — gives us the opportunity to metrically see what QUANTUM actually
means, namely, a volume jitter to the metric of the system in question... at least this is one quantum
option, because we have already seen others, like the perturbated kernel (e.g. see [7]).

Interestingly, for metrics without shear elements:

& = S Do g =0, (16)



and applying the solution for F[f] from (14) the derivative terms in (15), which is to say:
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converge to the ordinary Laplace operator, namely:
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= 0

We recognize the relativistic Klein-Gordon equation.

Thus, in the case of n>2 we always also have the option for a constant (broken symmetry) solution of
the kind:

0=f-C, = =C,. (19)

In all other cases, meaning where f Cfo , we have the simple equations:
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A critical argument should now be that this equation is not truly of Klein-Gordon character as it does
not contain neither potential nor mass, but the first author of this paper has already shown that this
problem is easily solved by adding additional dimensions carrying the right properties to produce
masses and potentials due to entanglement (e.g. [3 - 7]).

3 Theory

3.1 Some General Considerations

3.1.1 Using the Scaling Function F[f]
Inserting a wrapping function F[f] and a bit of reordering of (12) leads to:
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We recognize two non-linear terms in the last line. With the setting
-2
F[f]:Cm (f+Cf0) , (22)

we can get rid of one of them, resulting in:
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Interested in getting rid of the second non-linear (scalar) term in (21), we have to set:

_4
Ff]= CF-(f+Cf)(n—3) n¢3.
CF~ef'Cf n=3

In this case (21) yields the following field equations:

(23)

24)
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3.1.2 The Wave Approach
Starting with the simple case of metrics of constants, we obtain the following from the general
quantum gravity equation (12):

5GP
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In some cases it might be good to have the inner terms ordered with respect to the true tensor and
the scalar part (the latter multiplied with the metric tensor gug):
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We see, that with the — apparently comfortable - settings:
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Unfortunately, the only solution we can find is the trivial one with F being a constant via:

A[a[x, y,...]] =C, eIl g F(f)=const.

Going back to (33) and incorporating F, we can reshape the last line as follows:
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we would avoid the non-linearities, ending up with (35) again. The only solution we can find here,
however, is the ones we already know (e.g. [3 -7]) from our simple wrapping function F=F[f], now
with (c.f. (22) and (24)):
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Going back to (31), not demanding a[x,y,...]=l[x,y,...], results in:
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The remaining equation would then read:
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We recognize the complementary to the classical Eikonal “side-kick” (9) to be:
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3.1.2.1 The General Case
For completeness we now consider the general metric case, leading to:
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Summing up the coefficients for the powers of k gives us:
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Consequently, for big k,
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we would obtain the following Eikonal equation:

0=1,1,8,,8" (n-3)+21_1,.

and the quantum gravity equivalent for the classical equation (9) as follows:
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Interestingly, the gravity terms containing the Ricci curvatures (the vacuum Einstein field equations;

see boxed terms):
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It should be pointed out that, as before, with a suitable choice for L, one could get rid of the term

l’ml’B in the quantum gravity Eikonal equation (see next sub-section). This however, will make the

function L k-dependent and compromises our Eikonal derivation from above.

3.1.2.1.1 The Other “Eikonal”

Taking (21), we have seen in [8] that we have a variety of options to obtain various n-dependencies
for our wrapping function F[f]. Leaving F open and assuming that it does not depend on n, results in:
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This quadratic polynomial in n shows the following dominant term as limit of n>oo:
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We recognize the scalar Eikonal equation reading:

0=g"F,F,.

(55)

(56)

(57)

This equation is by far less restricted than (52) and it also much better mirrors the classical one (8).

De facto, when remembering the b?-term can be easily constructed via a suitable additional
dimension (see section “The Classical Eikonal Equation Derived From a Quantum Gravity Origin”), it
actually is the classical Eikonal equation.

While as before the Ricci-curvature terms:
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become recessive, we find the equivalent to the classical Eikonal-“side-kick” (9) via:

(58)
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3.1.3 Special Consideration of the Non-Linear Terms
Reordering (45) with respect to the linear and non-linear terms in a and |, gives us:
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With this F, not being dependent on the dimensionality n, we find an interesting situation when
considering space and space-times with huge numbers of dimensions. In these cases the equation
(62) evolves to:

_ guﬁgab ((A,)z
4 A

0

aa, +ick LA (a ], +ayl )+ A 1K (L’)zj . (63)

It should be pointed out that we obtain the same result with any other F not depending on n.

3.2 The Classical Eikonal Equation Derived From a Quantum Gravity Origin in the

Classical Way
Starting with (15) and applying the setting (43) for the function f as follows:

f= A[a [x; H L] (64)

we obtain from (30):
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Assuming huge k, the dominant term would be:
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This is the quantum gravity derived Eikonal equation, but for those who miss the constant term in
comparison to the classical Eikonal equation (8), we refer to [8], where it is shown how such a
constant arises from just a another dimension.

4 Consequences

The classical Eikonal equation can either be obtained from the Einstein-Hilbert action in the classical
way, which is to say with an approach of the type (28) plus the assumption of huge wave numbers k,
from the full quantum gravity field equations (12) by a volume restricted variation (weak gravity
condition) (13) or via the assumption of huge numbers of dimensions n. While in the latter case no



additional conditions are of need, we have a variety of such in the first case. This is bit of a surprise,
because classically the Einkonal equation is derived from a wave equation only via the assumption of
big k. With the Quantum Gravity starting point, however, when only taking the condition of big k
(without the weak gravity condition), we’d end up with a non-classical Eikonal equation in the form of
(52) (new and fully quantum gravity derived) in comparison with the much simpler form (66)
(perfectly agreeing with the classical Eikonal form) for large n.

It is very interesting that we obtain a classical equation of particles (particles of light) from the
quantum gravity field equations via a limiting procedure concerning the dimensionality of the system
rather than the classical restriction of the wave function approach (restriction to big wave numbers).
After all, there is no obvious connection between big wave numbers and high system dimensionality.
Our biological/evolutionary preconditioning forces us to try and see connections in cases where the
results are equal and so, consequently, we also tend to intent to see such a connection here and ask
“What could it possibly be that makes the two completely different limiting procedures to produce
the same result?”. There seems to be no direct association between high dimensionality of a system
and big wave numbers for solutions within this very system. And in fact, there is no such connection
(except that it gives the same limiting result from a quantum gravity standpoint)... or is there? Well, in
systems of high dimensionality the likelihood for the observation of small wavelengths is probably
higher, because a greater number of dimensions means a greater number of degrees of freedom and
those can cover oscillations the observer sees as concentrated or compactified on smaller ensembles
of dimensions (manifolds), which apparently is equal to smaller wavelengths.

Still, the rather different Eikonal equations for big k (52) in comparison with the much simpler form
(66) for big n, both resulting from the same Quantum Gravity starting point, shows us that there can
be no perfect relationship between the two procedures. The equivalence in the outcome in the case
of weak gravity is a triviality, because by restricting the variation to just the volume of the metric we
have reduced the Quantum Gravity to just its quantum part and thus, a wave equation, which, de
facto, is the classical starting point for the derivation of the Eikonal equation. Consequently, of course
there can be no other outcome there when setting in a general wave of type (1) and approximating
the equation with respect to big k. That the same result is obtained from the full Quantum Gravity
equations via big n is a structural coincidence for n roughly playing the role in the full equations, k is
playing in the restricted (weak gravity) equations. So, shouldn’t one conclude now that n can be seen
as some kind of wave number or k as some kind of dimensionality?

Yes and No!

Yes, under the right circumstances (no internal structural variation of the metric but only volume
variation), the wave number k is as global as the parameter n, because it affects always the whole
volume or scaling function f, which entangles all dimensions and not just an internal manifold.

No, when taking the full Quantum Gravity equations as starting point the outcome for the limiting
procedures for k (52) and n (66) are significantly different.

We can prove this by investigating sub-systems with chain-ordered or nested scaling functions Fi[fi] in
the same way as we did it here for the global scaling or volume function. The interested reader can
find the necessary math in [6, 7, 10] in connection with our quantum gravity consideration of Hugh
Everett’s multiverse theory.



5 Applications
As there are infinitely many systems with huge numbers of degrees of freedom, we can formulate an
equation for the expectation value E[...] for possible applications E[Applications] as follows [11, 12]:

_[ an\/E F Applications - F*
E[Applications] = Univere =0 (67)

[ axfel B

Universe

6 Conclusions

We have demonstrated in this short paper how the classical Eikonal equation can be derived from a
guantum gravity theory in a completely non-classical way. Thereby one only needs to assume a huge
number of degrees of freedom or dimensions residing within the system of interest. The classical way,
where a general wave approach is used and big wave numbers are assumed, does not produce the
classical but a slightly more complicated Eikonal equation. In this case, only certain additional
boundary conditions, like the assumption of a variation for the Einstein-Hilber action being restricted
to only the metric scaling or volume of the system, will bring the usual, classical result.
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