
 

The Harmonic Sphere 
By Dr. rer. nat. habil. Norbert Schwarzer 

Abstract 
Star�ng with the solu�ons to a classical harmonic poten�al in radial direc�on, fully metrically derived 
from an extended Einstein-Hilbert ac�on [A1, A2], thereby using our Quantum Gravity approach [A3 – 
A8], we demonstrate that the resul�ng quantum fields are those of half-spin objects. In addi�on to 
this half-spin character, we also find that the resul�ng “par�cles” have a rather well-defined finite or 
wall structure, which is in clear contrast to – e.g. – the well-distributed orbital solu�ons to the 
hydrogen atom. This clear boundary demarca�on might be seen as a typical characteris�c of 
par�cles, which are in this case, due to the half-spin condi�ons, fermions. 
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Metric Construc�on of the Spherical Harmonic Oscillator 
Using the method laid out in previous publica�ons [1 - 9] and par�ally repeated for convenience the 
appendix of this paper, we start with the following metric tensor in 8 dimensions: 
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Evalua�on of the corresponding Ricci scalar and following the procedure in the appendix, thereby 
using the separa�on approach and the par�al solu�ons as given in the appendix in equa�ons (17) to 
(19), we obtain the following scalarized Quantum Field equa�on for the radius coordinate r: 
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We see that for the choice of k[r] as: 
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s=1 and [ ]
i if constϕ ϕ =  for i=2,4,5, we obtain: 
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We obtain the following solu�on for fr: 
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We recognize the hypergeometric func�on U[a,b,z] and the Laguerre polynomials 
1L
2

qL
− −

 in the 

solu�ons above. These we already know from the Schrödinger hydrogen solu�on (e.g., [10]). The only 
reasonable solu�ons (singularity free) can be found for the case of half spins / 2L =   and then (5) 
simplifies to: 
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Figure 1 shows the corresponding fr-distribu�on for six se�ngs  =1/2…11/2 and the corresponding 
q=1…6 with CU=0 and CL=1. 

 

Fig. 1: fr-distribu�on from (6) for six se�ngs  =1/2…11/2 and the corresponding q=1…6 with CU=0 
and CL=1. 

We see that – in contrast to the Schrödinger hydrogen solu�ons (8) – our harmonic radial poten�al 
solu�on shows a very rigid behavior regarding the demarca�on of the object at a certain distance 
from the center. All the usual “outside oscilla�on” as we know it from the 1/r-poten�al has 
disappeared. One might see these solu�ons therefore as par�cles… especially as they sport half spins, 
an aspect, which we will consider in the next sec�on. 



 

About Spin 1/2, 3/2, 5/2 and so on 
In the following we want to inves�gate poten�al half-spin solu�ons for the associated Legendre 
polynomials, which we need in various forms within this paper (see sec�on above). 

Here, as an example, we intend to consider the simple form: 

 [ ] [ ][ ] [ ][ ]Pv
m m m
l l lQvv C P cos v C Q cos vY = ⋅ + ⋅ , (7) 

Observing the solu�on Y[v] more closely, we find that there exist singularity-free spin l=n/2-
solutuions for m=-n/2 with n=1,3,5,7… in the case of CPv≠0, CQv=0 and for m=+n/2 in the case of 
CPv=0, CQv≠0. Figures 2 and 3 illustrate the corresponding distribu�on within the domain of defini�on 
for the angle v from 0 to π. 

 

Fig. 2: Spin l=½ situa�on with the two possible spin states m=±1/2 according to our angular 
Quantum Gravity solu�on (7). For beter illustra�on and comparability, we divided the “Q-

Legendres” by 10. 



 

 

Fig. 3: Spin l=5/2 situa�on with the five possible spin states m=±{1/2,3/2,5/2} according to our 
angular Quantum Gravity solu�on (7). Regarding the evalua�on, see text. For beter illustra�on we 

divided the “Q-Legendres” by 10. 

 
The general solu�on to the par�al differen�al equa�on resul�ng from the Schrödinger hydrogen 
problem [10, 11, 12] can be given as follows: 
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It totally suffices here to consider the classical problems in order to also discuss the angular aspects 
of more complicated metrics, like:  
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for instance, as the results for these coordinates in both cases are the same func�onal dependencies.  



 

For nostalgic reasons we used the symbol “n” (here not the dimension) as the so-called main 

quantum number. All quantum numbers n, l and the parameter a0 depend on the constants iE,A  in 

connec�on with our solu�ons to metric (9) above and have to sa�sfy certain quantum condi�ons in 
order to result in singularity-free solu�ons for f[…]. 

Regarding the condi�ons for the quantum numbers n, l and m, we not only have the usual: 

 { }n,l,m ; n 0; l n; l m l∈ ≥ < − ≤ ≤ + , (10) 

but also found the suitable solu�ons for the half-spin forms as discussed above and derived in the 
figures 2 and 3. The corresponding main quantum numbers for half spin l-numbers with l=1/2, 3/2,… 
are simply (just as before with the integers) n=l+1=3/2,5/2,7/2,….  

It should explicitly be noted, however, that the usual spherical harmonics are inapplicable in cases of 
half spin. For {n,l,m}={1/2,3/2,5/2,7/2,…} the wave func�on (8) has to be adapted as follows: 
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Thereby it was elaborated elsewhere [13] that in fact the sin- and the cos-func�ons seem to make the 
Pauli exclusion [14] and not the “+” and “-“ of the m. However, in order to have the usual Fermionic 
sta�s�c we can simply define as follows: 

 [ ] [ ] [ ]
[ ]

[ ]
[ ]

t

m 0
i c C t lm 0

n,l,m m 0
lm 0

/2 2 1
1

sin m P cos
f t e, r, ,

cos m Q co
e

s
N L

<
± ⋅ ⋅ ⋅ + <

>
>

−
− −

 ⋅ϕ   ϑ
ϑ ϕ = ⋅ ⋅   ⋅

⋅ ⋅ ⋅ ⋅
ϕ ϑ  

ρ l l
n lρ ρ . (12) 

As derived in [13], the resolu�on of the degenera�on with respect to half spin requires a break of the 
symmetry, which we achieved by introducing ellip�cal geometry instead of the spherical one in [13]. 

 

Thus, we have metrically derived a fairly general “hydrogen atom”. In addi�on to the Schrödinger 
structure, our form also sports a �me-dependent factor clearly showing the op�ons for mater and 
an�-mater via the ±-sign in the g[t]-func�on. We also found the half spin states and were able to 
resolve the spin-degenera�on via a simple symmetry break by switching from spherical to ellip�cal 
coordinates (see [13] regarding the evalua�on). A few illustra�ons of the half-spin solu�ons are given 
in [15] in the sec�on “Illustra�on of Spin-1/2-Solu�ons”. 
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Appendix: Obtaining Purely Metric Radial Poten�als 
It was shown in [1, 2, 3] that in connec�on with condi�on: 
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and the subsequent scalarized Quantum Einstein Field Equa�ons: 
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a poten�al can be constructed via four addi�onal dimensions. We demonstrated that we can obtain 
any desired shape of poten�al in r, via a set of addi�onal dimensions (coordinates) with always four 
such coordinates for each exponent in r. So, being interested in a poten�al of the type: const, 1/r, 
1/r², for instance, our addi�onal metric components should look as follows: 
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Introducing the poten�al func�on k[r] again, this approach can be simplified as follows: 
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Using the separa�on solu�on from above with:  

 

[ ] [ ]

( )


i i i i i

i ii i
i ii i

1 11 1

1
1

i i

i A g i A g
i ii i ci si

mi A g i A g
1 1 1 c1 s1

1 1

f f g f g ;

A g A gf g C e C e C cos C sin

especially :classically

f g C e C e C cos C sinA g A

ϕ ϕ

ϕ ϕ

ϕ ϕ ϕ ϕ ϕ

− ⋅ ⋅ + ⋅ ⋅
ϕ ϕϕ ϕ − +

− ⋅ ⋅ + ⋅ ⋅
ϕ ϕ − +

ϕ

 ϕ = ϕ ≡     
⋅ ⋅= ⋅ + ⋅ = ⋅ + ⋅         

 = ⋅ + ⋅ = ⋅ + ⋅   ⋅  





1

m

gϕ

 
⋅  



, (17) 

 [ ] [ ] [ ]t t1 t2f t C cos c E t C sin c E t= ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ , (18) 

 [ ] [ ] [ ]1 1
L0 P 0 LQ

A
0

Af C P cos C Q cosϑ ϑ ϑ   ϑ = ϕ = ⋅ ϑ = ϕ + ⋅ ϑ = ϕ    , (19) 

with the associated Legendre polynomials 1 1A A
L L,QP , and inser�ng everything into (14), we obtain the 

following differen�al equa�on in r: 
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Ψ = Ψ ϑ = ϕ ϕ = ϕ = ⋅ ϑ = ϕ ⋅ ϕ = ϕ

⇒

⋅ + ⋅ + ⋅ ⋅
= ϑ ⋅ ϕ ⋅

+

∂ ∂
⋅ − − −

+

+ +

⋅∂
+

∂



[ ]rf r

 
 
 
 
 
 

. (20) 

We see that for the choice of k[r] as: 

 [ ] 2
P2

3

1 Vk Er A r
 = − − 
 

, (21) 



 

s=1 and [ ]
i if constϕ ϕ =  for i=2,4,5, we obtain: 

 

[ ] [ ] ( ) [ ]

( ) [ ] ( ) [ ]

2
2
P r2 2

2
2

r P r2 2

L V 2L 10 f f E E f rr r r r r

L VL 1 f E E fr rr r
2

r r r

ϑ

 ⋅ ∂ ∂+= ϑ ⋅ ϕ ⋅ + − − − ⋅∂ ∂ 
⇒

 ⋅ ∂ ∂+ + = − ⋅∂ ∂ 

−

− + +

 (22) 

and thus, the classical Schrödinger equa�on again (regarding its solu�on see text book literature (e.g. 
[4]) or the original papers from Schrödinger [5, 6]). 
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