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Infinite Orthogonal Dimensionality 
Part II: Why the Dirac Theory 

By Dr. Norbert Schwarzer 

1 Abstract 
In part I [A] of this series we discussed the question of universal infinity and linearity. Thereby we 
already saw that there are numerous ways to achieve linearity in a quantum gravity environment. 
In this short paper we are now investigating a linearization technique which directly leads to the Dirac 
theory. Our goal is the partial linearization of the quantum Einstein field equations by the means of a 
special transformation. 
[A] N. Schwarzer, “Infinite Orthogonal Dimensionality - Part I: Why We Need Linearity and How 

Does This Make the Space-Time Jitter”, 2025, a SIO science paper, www.siomec.de 

2 Introduction 
We take it that the reader is familiar with the equations resulting from a Hilbert variation [1] with 
respect to a scaled metric of the kind: 

 [ ]G g F fαβ αβ= ⋅ . (1) 

If not, the necessary ingredients can be found in the appendix of this paper and our previous 
publications [2–8]. The reader will also need to study our extended Hamilton principle (also appendix) 
with the resulting field equations: 
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Its expanded form in the case of a scaled metric (1) is given as follows: 
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. (3) 

While in (3) we kept the structure of the classical field equations from Einstein’s General Theory of 
Relativity [9], with the tensorial and the scalar Ricci parts well separated, in some cases it is useful to 
use the following form: 
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In [2–8] it was shown how certain settings of the so-called wrapping function F[f] would help us to get 
rid of some of the f-functional nonlinearities in (3). So, for instance, a setting of the kind: 
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gives us: 
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result in: 

 

( ) ( )

( ) ( )( )

ab ab
b, ,b, ,ab ,a

ab ab
, b,a , b,a

c, c, c,
cd

,d
ab

,c ab,c

2cd
,c ,d2

g gf f g g f gn 2

f g g f g g
F' 1 1R g ng ng2F 2 2f g

1 1ng g g g
2 2

0 1 g f f g F' 2FF''4 n4F

β α βααβ αβ

α β β α

αβ
α β α β β α

αβ αβ

αβ

  −+ +−
  
 − − 
  

 −  − −   
+    

   + +     
= 

 + −−
 

( )( )

( ) ( ) ( )( )

ab cd ab
,ab ,d ab,c

cd ab
,d ac,b

ab
2,a ,b

2

G

2g f f g g gn 1F'R
2F 1nf g g g g

2g f f
4FF'' F ' n 6n 1 4F

+ H

αβ

αβ

 
 
 
 
 
 
 
 
 
 δ
  
 

  + −  −     −  − ⋅     ⋅ − + − −   

, (10) 



 

6 
 

 

( )

( )

( ) ( )( )

ab
, ,ab

ab
b, ,b,a

ab ab
, b,a , b,a

c, c, c,
cd

,d
ab

,c ab,c

2
, ,2

f f g gn 2
g gf g

f g g f g gF'R
1 12F g ng ng
2 2f g

1 1ng g g g
0 2 2

1 f f 3 F' 2FF''n 24F

αβ αβ

β α βα

α β β α

αβ

α β α β β α

αβ αβ

α β

  +−
  

− + − 
  

−  
−  

   − −   +    
   + + =    


 + ⋅ −−
 

( )( )

( ) ( ) ( )( )

ab cd ab
,ab ,d ab,c

cd ab
,d ac,b

ab
2,a ,b

2

G

2g f f g g gn 1F'R
2F 1nf g g g g

2g f f
4FF'' F ' n 6n 1 4F

+ H

αβ

αβ

 
 
 
 
 
 
 
 
 
 
 δ
 
 
 
   +−   −     −  − ⋅     ⋅ − + − −   

, (11) 

and: 

 

( ) ( )

( )( )( )

ab ab
b, ,b, ,a , b,a

ab cd
, b,a ,d c, c, c, ,c

ab cd ab
,ab ,d ab,c

ab cd ab cd ab
,ab ,d ab,c ,d ac,b

g gf f g f g gn 2F2 R 1 1 1F' f g g f g g ng ng ng
2 2 2
1g f g f g g g0 2

Fg 22g f f g g g nf g g gn 1 F'

β α βααβ α β

αβ

β α α β α β β α αβ

αβ

αβ

 −+ −−
 ⋅ −   − + − − +    

 − + =  

+ −+ −−

( ) ( )( )2
, ,

1R
2

1 f f 3 F' 2FF''n 22F F'

+ H

α β

 
 
 
 
 
 
 
 
    ⋅ ⋅        
 + ⋅ −− 

⋅ 

, (12) 

respectively. 

3 A Strange Base-Vector and / or Dirac(!?!)-Linearity 
So far (c.f. [3–8]), we have achieved linearity via certain restrictions to the variation or introduced 
wrapping functions for the metric volume and/or the kernel of the variational integral. Now we want 
to consider a possibility of obtaining linearity for the quantum field equations directly through the 
solution for the functions F and f without any restrictions to the variation or the introduction of kernel 
factors. Hence, our starting point shall be the field equation of the form (3), where we now seek to 
find linearity with the following ansatz for F: 
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Thereby, for the reason of simplicity, we assume a metric of constants, which simplifies equation (3): 
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We immediately see that with the condition: 

 i j ijC C g⋅ =  (15) 

and F chosen in accordance with (5), equation (14) simplifies to: 
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As with our extreme simplicity chosen here, we would now have to demand f to just be: 
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and our solution does not seem to be of much practical use, but the interesting aspect is that for 
metrics like the Minkowski metric, we have to realize that the Ci cannot just be ordinary numbers. In 
fact, we would require certain matrixes in order to fulfill conditions like these: 

 i j ij

1 0 0 0
0 1 0 0

C C
0 0 1 0
0 0 0 1

 
 
 ⋅ = δ =
 
 
 

. (18) 

We can easily see that the so-called base vectors ei would do the job, because we have: 

 i j ijg⋅ =e e . (19) 

Surprisingly, it would also be matrices like the Dirac matrices that could help us here. As an example 
we consider the space with n=4. There the Dirac matrices could be given as follows (all empty slots are 
zeros): 

 

0 1

2 3
ij

1 1
1 1

;
1 1

1 1

i 1 1
i 1 1

; ; I
i 1 1

i 1 1

   
   
   γ = γ =
   − −
   

− −   
−     

     −     γ = γ = = δ =
     −
     
−     

. (20) 

As the metric tensor is connected with these matrices in the following way:  

 g I ; g I
2 2

α β β α
α β β ααβ

αβ

γ γ + γ γγ γ + γ γ
⋅ = ⋅ = , (21) 

we have to make the derivatives in (14) symmetric, which leads us to: 

 

( )

( ) ( )( )

( ) ( )( )

( )

( ) ( ) ( )( )

, , ,ab ,ba ab

2, , , ,

2
2,c ,d ,d ,c cd

,ab ,baab

ab
2,a ,b ,b ,a

2

f fF ' f f
g gn 22F 2 2

f f f f
3 F' 2FF''n 21 2

f f f f4F0 g g F' 2FF''4 n2
f fF ' gn 1F 2

f f f fg 4FF'' F ' n 6n 1 4F 2

αβ βα
αβ

α β β α

αβ

 + + − +−  
  

 + 
− − 

  +
 + = + −−  

  
+

− −
−

+
− + −−


G

1 g
2

+ H

αβ

αβ

 
 
 
 
 
 
 

δ 
 
      ⋅   
  

 

 (22) 

and the corresponding metric volume function: 
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 [ ]
n 1

i i i
i 0

f f x x
−

=

= = γ ⋅∑ . (23) 

3.1 Towards a Generalization of the Idea  Transformers Linearity 

Admittedly, the new technique seems to be a bit unwieldy in terms of writing volume and object sizes, 
but it is pretty straightforward and might provide some advantages for the numerical handling of 
complex tasks and complicated geometries as they occur in connection with complex systems like 
internally structured fluids, for instance. 
In this subsection we therefore intend to only roughly investigate the idea of using a transformation 
similar to the one discussed above in order to achieve linearity for the quantum gravity field 
equations… at least for the wave functions. Thereby we will concentrate on the effect of the various 
versions of the field equations and how the transformation could be applied. In order to move on 
quickly, we will at first be a bit “sloppy” with respect to the rigor of the incorporation of the technique. 
Later in this paper, we will then investigate the method with more intensity and accuracy. 

3.1.1 The Introduction of Metric Separation Matrices 
When aiming towards a generalization of the approach from above, we might like to introduce the 
following transformations: 

 j ji i
,ij ,ij

i
, ,i

i j ij
, , ,i , j ,i , j

C A f C C fi j ij i j ij
, ,ij ,ij ,ij ,ij

ab i j ab ij ij
,a ,b a b ,i , j ab ,i , j ,i , j

ab ab i j ab ij
,ab a b ,ij ab ,

f C f

f f C C f f g C f f

f C A f g B f C C f g C f

f f g C C f f g g C f f n C f f

f g g C A f g g B f

α αβ β

α α

α β α β αβ

=
αβ α β αβ α β αβ

→

→ =

→ = → =

→ = = ⋅

→ =
j ji i

,ij ,ij

ij
ij ,ij

C A f C C f

ab i j ab ij ij
a b ,ij ab ,ij ,ij

n B f

g C C f g g C f n C f

α αβ β=

 = ⋅
  
 →
 

= = ⋅  

. (24) 

Thereby we should point out that the arrow in the equations above should be understood as follows: 

 j ji i
,ij ,ij

i
, ,i

i j ij
, , ,i , j ,i , j

C A C Ci j ij i j ij
, ,ij ,ij ,ij ,ij

ab i j ab ij ij
,a ,b a b ,i , j ab ,i , j ,i , j

ab ab i j ab ij
,ab a b ,ij ab ,

f C

f f C C g C

f C A g B C C g C

f f g C C g g C n C

f g g C A g g B

α αβ β

α α

α β α β αβ

ψ = ψ
αβ α β αβ α β αβ

= ψ

= ψ ψ = ψ ψ

= ψ = ψ → ψ = ψ

= ψ ψ = ψ ψ = ⋅ ψ ψ

= ψ = ψ
j ji i

,ij ,ij

ij
ij ,ij

C A C C

ab i j ab ij ij
a b ,ij ab ,ij ,ij

n B

g C C g g C n C

α αβ βψ = ψ

 = ⋅ ψ
  
 →
 

ψ = ψ = ⋅ ψ  

, (25) 

and that our settings above are definitively too simple to truly be of practical relevance. We would 
probably end up in no more generality and / or flexibility than we have with (23), but we will keep the 
brevity of (24) and in fact mean more something like this: 
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j ji i

,ij ,ij

i
, ,i

i j ij
, , ,i , j ,i , j

C A f C C fi j ij i j ij
, ,ij ,ij ,ij ,ij

ab i j
,a ,b a b ,i , j

I f C f

I I f f C C f f g C f f

I I f C A f g B f C C f I g C f

I I f f g C C f f

α αβ β

α α

α β α β αβ

=
αβ α β αβ α β αβ

⋅ →

⋅ ⋅ → =

⋅ ⋅ → = → = ⋅

⋅ ⋅ →

   

    





  

     

    

       

 

  

j ji i
,ij ,ij

ab ij ij
ab ,i , j ,i , j

ab ab i j ab ij ij
,ab a b ,ij ab ,ij ,ij

C A f C C f

ab i j ab ij ij
a b ,ij ab ,ij ,ij

g g I C f f n I C f f

I I f g g C A f g g I B f n I B f

g C C f g g I C f n I C f

α αβ β=

= ⋅ = ⋅ ⋅

 ⋅ ⋅ → = ⋅ = ⋅ ⋅

 →


= ⋅ = ⋅ ⋅

   

    

 

    

   

     

   

     







 

, (26) 

where we immediately see that each component of the objects iCα  are matrices and the functions f 

have to become vectors (spinors). So, for brevity, throughout this paper, the objects iCα  have matrix 

components, but we refrain from explicitly pointing this out everywhere and apply the shorter forms 
(24) instead. 
Now we can rewrite equation (14) as follows (thereby always remembering that the components of 

the i ij j ijC ,C ,A ,Bα β  are no simple numbers but complex objects i ij j ijC ,C ,A ,Bα β

   

   

): 

 

( )( )
( ) ( )( )

( ) ( )( )

( ) ( ) ( )( )

ij ij
,ij ,ij

2ij
,i , j

2 2ij
,i , j

ij
2,i , jij

,ij 2

F ' C f n C fn 22F

C f f 3 F' 2FF''n 21
0 g G4F n C f f F ' 2FF''4 n

n C f fF ' 1n C f 4FF'' F ' n 6n 1 F 4F 2
F'

nF

g

+ H

αβ
αβ

αβ

  − + ⋅−  
  
   −−   += δ   + ⋅ −−   
  ⋅   − − ⋅ − + ⋅ −−       

− −

=

( )

( ) ( )( ) ( ) ( )( )( )

( ) ( ) ( )( )

( )
( )

( ) ( ) ( )( ) ( )( )

ij
,ij

ij
,i , j 2 2
2

ij
2,i , jij

,ij 2

ij
,ij

ij
,i , j 2

2

C f1

C f f
G3 F' 2FF'' n F ' 2FF''n 2 4 n4F

C f fF ' 1n C f 4FF'' F ' n 6n 1 F 4F 2
F' C f
F

C f f
F ' 3 n 4FF''g n 2 4 n n 1n 1 4F n 1

+ H

αβ

αβ

  
  
  
  
+ δ − + ⋅ − − −  

     − ⋅ − − + ⋅ −−  
    

 −

+ + ⋅ −= − − −−
−

( ) ( )( )
ij

2,i , jij
,ij 2

G

C f fF ' 1n C f 4FF'' F ' n 6F 4F 2
+ H

αβ

 
  
  
  

δ  
 

     + ⋅ + + ⋅ −       

. (27) 

We see that also the middle line results in the same equation for F[f] as we already have in the last line 
(which represents the Ricci scalar part of the quantum Einstein field equations), namely: 
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( )
( )

( ) ( )( )( ) ( )( )

( ) ( )( )

( )
( ) ( )( )

ij
,ij

ij
,i , j 2

2

ij
2,i , jij

,ij 2

ij
,i , j ij2

,ij2

ij
,ij

F ' C f
F

C f f
F ' 4FF''0 g G6 nn 1 n 1n 1 4F n 1

C f fF ' 1n C f 4FF'' F ' n 6F 4F 2
C f f F ' C fF ' 6 n 4FF''4F Fg n 1

F'n C f
F

+ H

αβ
αβ

αβ

  −  
  
  

+ −= δ −− −−  
−  

     + ⋅ + + ⋅ −       

−− −
= −

+ ⋅ + ( ) ( )( )

( )
( ) ( )( )

( ) ( )( )

ij
2,i , j

2

ij
,i , j ij2

,ij2

ij
2,i , jij

,ij 2

G
C f f 14FF'' F ' n 64F 2

C f f F ' C f4FF'' F ' n 64F Fg Gn 1
C f fF ' 1n C f 4FF'' F ' n 6F 4F 2

+ H

+ H

αβ

αβ
αβ

 
 
 δ
     + ⋅ −  

    
 

− − + −
 = δ−      + ⋅ + + ⋅ −  

    

. (28) 

With F[f] being chosen in accordance with (5), we would consequently get rid of the nonlinear terms 
and obtain: 

 ( ) ij
,ij

F ' 10 g C f n 1 Gn 1 F 2
+ H αβ

αβ

  = ⋅ − δ−     
. (29) 

Applying the recipe on the full equation (3) without any restrictions to the metric gives us: 

 

( )

( )

G

* *

ij ij
,ij ,ij

i ab i ab i ab
b, ,ba ,i ,i b,a ,i b,a

c, c, c,
i cd
d ,i

,c

11 10 g gR R G
F2 F

g B f n B f gn 2
g gC f g C f g g C f g g

F' 1 1R g ng ng2F 2 2C f g
1 1ng
2

+ H

αβδ

αβ αβ
αβ αβ

αβ αβ

β α βα α β β α

αβ
α β α β β α

αβ

     = ⋅δ + ⋅δ−           

+ ⋅−

−+ − −

− − −
+

+ +

=



( ) ( )( )
( ) ( )( )

( )( )

ab
ab,c

2ij
,i , j

2 2ij
,i , j

ij i cd ab
,ij d ,i ab,c

i cd ab
d ,i ac,b

g g g
2

C f f 3 F' 2FF''n 2g
4F n C f f F ' 2FF''4 n

2n B f C f g g gn 1F'R
2F nC f g g g

n

αβ

αβ

  
  
  
  

   
   
   
        

 
  −−  +
  + ⋅ −−  

 ⋅ +−
 −
 − −

−( ) ( ) ( )( )
ij

2,i , j
2

G

1 g
2n C f f

4FF'' F ' n 61 4F

+ H

αβ

αβ

 
 
 
 
 
 
 
 
 
 

δ 
 
 
 
  
  
     ⋅      ⋅ + −−   

, (30) 

which simplifies to: 
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( )

( )

G

* *

c, c, c,
ij i cd

,ij d ,i
ab

,c ab,c

i ab i ab
b, ,ba ,i ,i b,a

11 10 g gR R G
F2 F

1 1g ng ng
2 22g B f C f gn 1F' 1 1R ng g g g2F 2 2

g gC f g C f g g C

+ H

αβδ

αβ αβ
αβ αβ

α β α β β α

αβ

αβ
αβ αβ

β α βα α β β

     = ⋅δ + ⋅δ−           

 − − 
+  −

−  + + 
 

−+ − −

=



( ) ( ) ( )( )

( )( )

( ) ( ) ( )( )

i ab
,i b,a

2ij
,i , j2

ij i cd ab
,ij d ,i ab,c

i cd ab
d ,i ac,b

ij
2,i , j

2

f g g

g
C f f 4FF'' F ' n 6n 1 4F

2n B f C f g g gn 1F'R
2F 1nC f g g g g

2n C f f
4FF'' F ' n 6n 1 4F

+ H

α

αβ

αβ

  
  
  
  
  
     
 − + −−


   ⋅ +−   −
     − − ⋅     ⋅

− + −−  

Gαβ









δ









. (31) 

We realize that with the introduction of our “metric matrices” (26), here used without always pointing 
out the matrix character of each component and abbreviating via (24), our quantum gravity equations 
simplified with respect to the nonlinear terms. Our little Dirac-like trick allowed us to collect all f-
nonlinearity in just one term, namely (see box in the last line): 

 

( )

( )

G

* *

c, c, c,
ij i cd

,ij d ,i
ab

,c ab,c

i ab i ab
b, ,ba ,i ,i b,a

11 10 g gR R G
F2 F

1 1g ng ng
2 22g B f C f gn 1F' 1 1R ng g g g2F 2 2

g gC f g C f g g C

+ H

αβδ

αβ αβ
αβ αβ

α β α β β α

αβ

αβ
αβ αβ

β α βα α β β

     = ⋅δ + ⋅δ−           

 − − 
+  −

−  + + 
 

−+ − −

=



( )( )

( ) ( ) ( )( )

i ab
,i b,a

ij i cd ab
,ij d ,i ab,c

i cd ab
d ,i ac,b

2ij
,i , j2

f g g

2n B f C f g g gn 1F' 1R g G
2F 2nC f g g g

g 1C f f 4FF'' F ' n 1n 6n 1 4F 2

+ H

+ H

α

αβ

αβ

  
  
  
  
  
      

   ⋅ +−     − − ⋅ δ      −   
    + + ⋅ −−−       

αβ

. (32) 

From here now, linearization of the quantum field equations with respect to the wave function f is 
straightforward. 

3.1.1.1 The Metric Klein-Gordon Equation 

3.1.1.1.1 Full Tensor and Scalar Separation 
Using condition (5) again yields: 
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( )

( )

G

* *

c, c, c,
ij i cd

,ij d ,i
ab

,c ab,c

i ab i ab
b, ,ba ,i ,i b,a

11 10 g gR R G
F2 F

1 1g ng ng
2 22g B f C f gn 1F' 1 1R ng g g g2F 2 2

g gC f g C f g g C

+ H

αβδ

αβ αβ
αβ αβ

α β α β β α

αβ

αβ
αβ αβ

β α βα α β β

     = ⋅δ + ⋅δ−           

 − − 
+  −

−  + + 
 

=
−+ − −



( )( )

i ab
,i b,a

ij i cd ab
,ij d ,i ab,c

i cd ab
d ,i ac,b

G
f g g

2n B f C f g g gn 1F' 1R g
2F 2nC f g g g

+ H

αβ

α

αβ

   
   
   
   
   
    δ      
   ⋅ +−     − − ⋅      −   

. (33) 

Now we distinguish again rigorously between scalar terms times the metric tensor gαβ  and tensor parts: 

 ( )
( )

G

* *

i cd
d ,i c, c, c, ,c

i ab i ab i ab
b, ,ba ,i ,i b,a ,i b,a

11 10 g gR R G
F2 F

1 1 1C f g g ng ng ngF' 2 2 2R
2F g gC f g C f g g C f g g

n 1F'R
2Fg

+ H

αβδ

αβ αβ
αβ αβ

α β α β β α αβ
αβ

β α βα α β β α

αβ

     = ⋅δ + ⋅δ−           

  − − +   −  
 −+ − − 

= −
−

−



( )

( )

ij i cd ab
,ij d ,i ab,c

i cd ab
d ,i ac,b

ij i cd ab
,ij d ,i ab,c

G2n B f C f g g g 1
2nC f g g g

F' 12B f C f g g gn 12F 2

+ H
αβ

 
 
 
 
 
     δ⋅ +       ⋅       −    
    − + −     

. (34) 

We demand: 

 
( )( )( )

( )

ij i cd ab i cd ab
,ij d ,i ab,c d ,i ac,b

ij i cd ab
,ij d ,i ab,c

2F 1R 2n B f C f g g g nC f g g gn 1F' 20
12B f C f g g gn 1 2

+ H    − ⋅⋅ + −−        =
  − +−    

 (35) 

and use the resulting solution for f to find the metric tensor via the remaining field equations: 

 
( )

i cd
d ,i c, c, c, ,c

i ab i ab i ab
b, ,ba ,i ,i b,a ,i b,a

1 1 1C f g g ng ng ngF' 2 2 20 R
2F g gC f g C f g g C f g g

α β α β β α αβ
αβ

β α βα α β β α

  − − +   = −  
 −+ − − 

. (36) 

3.1.1.1.2 Ricci Tensor and Ricci Scalar Separation 
Starting directly with (33), we demand: 

 ( )( )( )ij i cd ab i cd ab
,ij d ,i ab,c d ,i ac,b

F '0 R 2n B f C f g g g nC f g g gn 12F
= − ⋅ + −−  (37) 
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for the determination of the wave function f, and subsequently obtain the following equation for the 
determination of the metric tensor: 

 
( )

( )

c, c, c,
ij i cd

,ij d ,i
ab

,c ab,c

i ab i ab i ab
b, ,ba ,i ,i b,a ,i b,a

1 1g ng ng
2 22g B f C f gn 1F' 1 10 R ng g g g2F 2 2

g gC f g C f g g C f g g

α β α β β α

αβ

αβ
αβ αβ

β α βα α β β α

  − −  
 +  −

= −   + +   
  −+ − − 

. (38) 

We see that in this case the parameter H plays no role, and it would not matter whether we accept the 
classical Hamilton extremal principle or rather keep it undogmatic and general as the “principle of the 
ever-jittering fulcrum” [13]. 

3.1.1.1.3 Gravity and Matter Separation 
Following the classical structure of the Einstein field equations, we could interpret everything not being 
contained by the classical vacuum field equations, which—in our case with the generalized Hamilton 
principle—would be: 

 10 R R g
2

+ Hαβ αβ

  = − ⋅    
, (39) 

as matter and separate consequently as follows: 

 
( )

( )
( )

c, c, c,
ij i cd

,ij d ,i
ab

,c ab,c

i ab i ab i ab
b, ,ba ,i ,i b,a ,i b,a

ij i
,ij d ,i

1R R g
2

1 1g ng ng
2 22g B f C f gn 1F' 1 10 ng g g g2F 2 2

g gC f g C f g g C f g g

2n B f C fn 1F'
2F

+ Hαβ αβ

α β α β β α

αβ

αβ αβ

β α βα α β β α

 − ⋅ 
 

  − −  
 +  −

= −   + +   
  −+ − − 

⋅ +−
+

( )cd ab
ab,c

i cd ab
d ,i ac,b

g g g 1 g
2nC f g g g

+ H αβ

 
 
 
 
 
 
 
 
 
 
 

     ⋅      −  

. (40) 

Now we demand: 

 ( )( )ij i cd ab i cd ab
,ij d ,i ab,c d ,i ac,b0 2n B f C f g g g nC f g g gn 1= ⋅ + −−  (41) 

for the determination of the wave function f and subsequently obtain the field equations: 

 ( )

( )

c, c, c,
ij i cd

,ij d ,i
ab

,c ab,c

i ab i ab i ab
b, ,ba ,i ,i b,a ,i b,a

1R R g
2

1 1g ng ng
0 2 22g B f C f gn 1F' 1 1ng g g g2F 2 2

g gC f g C f g g C f g g

+ Hαβ αβ

α β α β β α

αβ

αβ αβ

β α βα α β β α

  − ⋅    
   − −   =   +  −
 −   + +        −+ − −  

. (42) 

The latter equations, which are, obviously, field equations with matter, determine the metric tensor. 
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As being interested in completely reproducing the classical field equations, resulting from the Einstein-
Hilbert action with the extremal principle with the vacuum part: 

 10 R R g
2αβ αβ

 = − ⋅ 
 

, (43) 

we can separate as follows: 

 
( )

( )
( )

c, c, c,
ij i cd

,ij d ,i
ab

,c ab,c

i ab i ab i ab
b, ,ba ,i ,i b,a ,i b,a

ij i cd ab
,ij d ,i a

1R R g
2

1 1g ng ng
2 22g B f C f gn 1F' 1 10 ng g g g2F 2 2

g gC f g C f g g C f g g

2n B f C f g g gn 1F'
2F

αβ αβ

α β α β β α

αβ

αβ αβ

β α βα α β β α

− ⋅

  − −  
 +  −

= −   + +   
  −+ − − 

⋅ +−
+

( )b,c

i cd ab
d ,i ac,b

1 R g
2nC f g g g

+ H H αβ

 
 
 
 
 
 
 
 
 
 
 

       ⋅ − ⋅      −   

. (44) 

Demanding the determination of the wave function f via the linear scalar equation: 

 
( )( )ij i cd ab

,ij d ,i ab,c

i cd ab
d ,i ac,b

2n B f C f g g gn 1F' 10 R
2F 2nC f g g g

+ H H
 ⋅ +−   = ⋅ − ⋅    − 

, (45) 

leaves us with the following matter field equation: 

 ( )

( )

c, c, c,
ij i cd

,ij d ,i
ab

,c ab,c

i ab i ab i ab
b, ,ba ,i ,i b,a ,i b,a

1R R g
2

1 1g ng ng
2 20 2g B f C f gn 1F' 1 1ng g g g2F 2 2

g gC f g C f g g C f g g

αβ αβ

α β α β β α

αβ

αβ αβ

β α βα α β β α

 − ⋅ 
 

   − −   =  +   −
−    + +    

    −+ − −  

, (46) 

where obviously the following term could be interpreted as the classical matter term: 

 
( )

( )

c, c, c,
ij i cd

,ij d ,i
ab

,c ab,c

i ab i ab i ab
b, ,ba ,i ,i b,a ,i b,a

1 1g ng ng
2 22g B f C f gn 1F' 1 10 ng g g g2F 2 2

g gC f g C f g g C f g g

α β α β β α

αβ

αβ αβ

β α βα α β β α

  − −  
 +  −

= −   + +   
  −+ − − 

. (47) 

3.1.1.2 The Metric Dirac Equation 
Going back to (31), leaving F unfixed and reordering: 
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( )

( )

G

* *

c, c, c,
ij i cd

,ij d ,i
ab

,c ab,c

i ab i ab
b, ,ba ,i ,i b,a

11 10 g gR R G
F2 F

1 1g ng ng
2 22g B f C f gn 1F' 1 1R ng g g g2F 2 2

g gC f g C f g g C

+ H

αβδ

αβ αβ
αβ αβ

α β α β β α

αβ

αβ
αβ αβ

β α βα α β β

     = ⋅δ + ⋅δ−           

 − − 
+  −

−  + + 
 

−+ − −

=



( )( )

( ) ( ) ( )( )

i ab
,i b,a

ij i cd ab
,ij d ,i ab,c

i cd ab
d ,i ac,b

2ij
,i , j2

f g g

2n B f C f g g gn 1F' 1R g G
2F 2nC f g g g

g 1C f f 4FF'' F ' 1 nn 6n 1 4F 2

+ H

+ H

α

αβ
αβ

αβ

  
  
  
  
  
      

   ⋅ +−     − − ⋅ δ      −   
   − + − ⋅−−      

, (48) 

now gives us the opportunity to derive a quantum gravity Dirac equation. Knowing that, instead of 
condition (5), respectively, (7), (8), and (9), we could also have any other condition in (48) like e.g., 

(with an arbitrary function [ ] [ ]H fH ' H 'f f
∂

= =
∂

): 

 

( ) ( )

[ ]

[ ]
f

H
f 0

1

4
f

H
f 0 f1

1

e d

1

2

f

4FF'' F ' n 6
F' H

4

'

2

4

F

n 2e

n

F

d n 2

e

n-2

C

C C

C
φ

φ

⋅ φ


 − + ⋅ ⋅ φ ⋅ > 



+ −
= ⋅

⋅

⇒

∫

= 


=

∫
, (49) 

leading us to: 

 
( )

( )

G

* *

c, c, c,
ij i cd

,ij d ,i
ab

,c ab,c

i ab
b, ,ba ,i

11 10 g gR R G
F2 F

1R R g
2

1 1g ng ng
2 22g B f C f gn 1F' 1 1ng g g g2F 2 2

g gC f g C

+ H

+ H

αβδ

αβ αβ
αβ αβ

αβ αβ

α β α β β α

αβ

αβ αβ

β α βα

     = ⋅δ + ⋅δ−           

 − ⋅ 
 

 − − 
+  −

−  + + 
 

= −+ −



( )( )

( )

i ab i ab
,i b,a ,i b,a

ij i cd ab
,ij d ,i ab,c

i cd ab
d ,i ac,b

ij
,i , j

f g g C f g g

2n B f C f g g gn 1F' 1 g
2F 2nC f g g g

g 1C f f F ' H ' 1 nn 1 F 2

+ H

+ H

α β β α

αβ

αβ

 
 
 
  
  
  
  
  
   −  


   ⋅ +−     + ⋅      −  
   − ⋅ − ⋅−       

Gαβδ









, (50) 
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where we have separated what—we think—classically (with H=0) is the gravity part. We can reshape 
(50) as follows: 

 ( )( )

G

* *

i cd
d ,i c, c, c, ,c

i ab i ab i ab
b, ,ba ,i ,i b,a ,i b,a

11 10 g gR R G
F2 F

2F 1R R g
F' 2

1 1 1C f g g ng ng ng
2 2 2

g gC f g C f g g C f g g

+ H

+ H

αβδ

αβ αβ
αβ αβ

αβ αβ

α β α β β α αβ

β α βα α β β α

     = ⋅δ + ⋅δ−           

  − ⋅    
 − − − + 
 

−− − −
=

+



( )( )( )
( )

( )

ij i cd ab i cd ab
,ij d ,i ab,c d ,i ac,b

ij i cd ab
,ij d ,i ab,c

ij
,i , j

G12n B f C f g g g nC f g g gn 1 2
1g 2B f C f g g gn 1 2

12 C f f H ' 1 nn 1 2

+ H

+ H

αβ

αβ

 
 
 
 
 
 
 
 

δ   ⋅⋅ + − −      
   − + −     
    − ⋅ − ⋅ −         

. (51) 

We have a variety of options to solve this equation. Here we are only interested in extracting the 
classical Dirac equation (though more general than the classical one as we keep both the coordinates 
and the number of dimensions arbitrary).  

3.1.1.2.1 Coupling Gravity and Quantum Effects 
Thus, we start with the following separation: 

 
( )( )

( )( )( )

i cd
d ,i c, c, c, ,c

i ab i ab i ab
b, ,ba ,i ,i b,a ,i b,a

ij i cd ab i cd ab
,ij d ,i ab,c d ,i ac,b

2F 1R R g
F' 2

1 1 10 C f g g ng ng ng
2 2 2

g gC f g C f g g C f g g

12n B f C f g g g nC f g g gn 1

0

+ Hαβ αβ

α β α β β α αβ

β α βα α β β α

   − ⋅      
  = − − − +  

  
 −− − − 

⋅⋅ + −−

= ( )

( )

ij i cd ab
,ij d ,i ab,c

ij
,i , j

2
12B f C f g g gn 1 2

12 C f f H ' 1 nn 1 2

+ H

+ H

  
    

  − +−    
   − ⋅ − ⋅−       

. (52) 

Now we demand an eigenvalue solution for the following term: 

 
( )( )( )

( )

ij i cd ab i cd ab
,ij d ,i ab,c d ,i ac,b

2

ij i cd ab
,ij d ,i ab,c

12n B f C f g g g nC f g g gn 1 2M f
12B f C f g g gn 1 2

+ H  ⋅⋅ + −−     − =
  − +−    

, (53) 

leading us to: 
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 ( )2 ij
,i , j

10 M f 2 C f f H ' 1 nn 1 2
+ H  = + ⋅ − ⋅−     

. (54) 

The simplest path forward in order to obtain a good starting point for the Dirac equation is to apply a 
function H’=H’[f]=Y/f. The corresponding solution for F[f] in the case of n>2 would be: 

 

( ) ( )

( )
[ ]( )

4
1 Y

f1 f 0

4

f

2

1 f 0

Y 1,n 2C f

C ln Y 1,n 2f

4FF'' F ' n 6 F'F ' H ' Y
4F f

F

F

n-2

n-2

C

C

+

+ −
= ⋅ =



 
⋅ ≠ − >+ 

 
 ⋅ + = − >

⋅

=

= 

⇒

. (55) 

By introducing the index i for a list of functions fi, (54) becomes1: 

 

( )

( )

2
2

2 2
i i, i,

Mm
12 1 nn 1 2

2 2
i i, i,

10 M f 2 C f f 1 nn 1 2

0 m f C f f

+H

+ Hαβ
α β

=
  ⋅ − ⋅−     

αβ
α β

  = + ⋅ − ⋅−     

→

= +

. (56) 

Thereby we have set Y=1. The next step is to apply the known relation between the Dirac matrices, 
which we here give in the original Dirac assumption with n=4, R=0, and for Cartesian coordinates (note 
that all empty slots are standing for zeros; also note that we here only give the Dirac matrices in the 
Cartesian, respectively the Minkowski case for a four-dimensional space-time):  

 

0 1

2 3

1 1
1 1

;
1 1

1 1

i 1 1
i 1 1

; ; I
i 1 1

i 1 1

   
   
   γ = γ =
   − −
   

− −   
−     

     −     γ = γ = =
     −
     
−     

. (57) 

We also introduce the following relation with our matrix object Cij and the metric tensor, reading:  

 ijC C
2

α β β α
αβ γ γ + γ γ

→ = , (58) 

and put (56) into the following form:  

 
1 It can be shown that such a list naturally and without any postulations arises either within an Everett 
“multiverse” approach (e.g., [10, 11]) or via the assumption of a multi-factor scaling of the metric tensor as we 
are going to consider in subsection “Towards the Dirac Spinors” and the section “The Bianchi Separator” in our 
book [5]. 
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( )
( )( )

( )

i , i , i , i ,

2 2
i, i, i

2 2
i, i, i

f f f f 0

2 2
i, i, i ii, i,

i, ii, i

i, i

I If f m f 0
22

f f I m f

f f i I m f I m ff f

0f i I m ff i I m f

0f i I m f

f

β α γ γ
β α γ γ

α β β α

α β

α β
α β

γ − γ = γ − γ =

α β β α
α β β α

βα
βα

β
β

+ γ γ + γ γ + ⋅ ⋅ = 
 
⇒ γ γ + ⋅ ⋅

 
=   γ γ + ⋅ ⋅ ⋅ + ⋅ ⋅γ − γ 

= =γ − ⋅ ⋅ ⋅γ + ⋅ ⋅ ⋅

=γ − ⋅ ⋅ ⋅

⇒



( )( )
2 2

i, i, i

i, ii, i

f I m f 0

0f i I m ff i I m f

β α
α β

βα
βα

γ γ + ⋅ ⋅ =

⇒ =γ − ⋅ ⋅ ⋅γ + ⋅ ⋅ ⋅

. (59) 

In the last line we recognize the Dirac equations: 

 i, if i I m f 0α
αγ ± ⋅ ⋅ ⋅ = . (60) 

Unfortunately, in the interesting cases for n>2 and H=0 our equation (56) changes to: 

 

( ) ( )

( ) ( )

2
2

2 2
i i, i,

Mm
n 2n 1

2 2
i i, i,

0 M f C f f n 2n 1

0 m f C f f

αβ
α β

=
⋅ −−

αβ
α β

= − ⋅ ⋅ −−

→

= −

. (61) 

In order to end up with the desired “+”-sign, which is to say with: 

 2 2
i i, i,0 m f C f fαβ

α β= +  (62) 

again, we would need to demand Y=-1 in (55). 
More discussion on the connection with the classical case, including the full derivation with respect to 
the eigenvalue equation of Klein-Gordon character in (53), is been given in [2] in the section “How to 
Metrically Derive the Dirac Equation”. 

3.1.1.2.2 Decoupling Gravity and Quantum Effects 
As said before, there are many options to combine the various terms in the main equation (51). An 
interesting one is the complete separation of Einstein’s gravity in the vacuum case and the quantum 
effects. We therefore demand: 
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( )( )( )
( )

( )

ij i cd ab i cd ab
,ij d ,i ab,c d ,i ac,b

ij i cd ab
,ij d ,i ab,c

ij
,i , j

2F 10 R R g
F' 2

10 R R g
2

12n B f C f g g g nC f g g gn 1 2
1g 2B f C f g g gn 1 2

12 C f f H ' 1 nn 1 2

0

+ H

+ H

+ H

+ H

αβ αβ

αβ αβ

αβ

  = − ⋅    
 ⇒ = − ⋅ 
 

  ⋅⋅ + −−    
  + − +− 

 
  − ⋅ − ⋅−     

=

( )( )

i cd
d ,i c, c, c, ,c

i ab i ab i ab
b, ,ba ,i ,i b,a ,i b,a

1 1 1C f g g ng ng ng
2 2 2

g gC f g C f g g C f g g

α β α β β α αβ

β α βα α β β α

 
 
 
 
  
  
  
  

 
  − − − +  

  
 −− − − 

. (63) 

Now we demand an eigenvalue solution for the following term: 

 

( )( )

( )

ij i cd ab
,ij d ,i ab,c

i cd ab
d ,i ac,b

ij i cd ab
,ij d ,i ab,c

2 i cd
d ,i c, c, c, ,c

i ab
b,a ,i

2n B f C f g g gn 1 1
2nC f g g gg

12B f C f g g gn 1 2
1 1 1g M f C f g g ng ng ng
2 2 2

g gC f g

+ H

αβ

αβ α β α β β α αβ

β α βα

  ⋅ +−     ⋅    − +  
  − +−    

 − = − − − + 
 

−− ( )( )i ab i ab
,b ,i b,a ,i b,aC f g g C f g gα β β α

 
 
 
 
 
 
 
 
 
 
 − − 

, (64) 

leading us, as before, to: 

 

( )

( )

2 ij
,i , j

2 ij
,i , j

10 g M f g 2 C f f H ' 1 nn 1 2

10 M f 2 C f f H ' 1 nn 1 2

+ H

+ H

αβ αβ

  = + ⋅ − ⋅−     
⇒

  = + ⋅ − ⋅−     

. (65) 

3.1.1.2.3 The Dirac-Matter Separation 
Finally, we investigate a separation of Dirac-matter and the Einstein field equations with matter 
following from our quantum gravity equations (51) when splitting up and demanding an eigenvalue 
solution as follows: 
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 ( )( )
( )( )

i cd
d ,i c, c, c, ,c

i ab i ab i ab
2 b, ,ba ,i ,i b,a ,i b,a

ij i cd ab
,ij d ,i ab,c

i cd ab
d ,i ac,b

2F 1R R g
F' 2

1 1 1C f g g ng ng ng
2 2 2

g gC f g C f g g C f g gg M f
2n B f C f g g gn 1 1

nC f g g gg

+ Hαβ αβ

α β α β β α αβ

β α βα α β β α
αβ

αβ

  − ⋅    
 − − − + 
 

−− − −− =
 ⋅ +−
  ⋅
 − +

( )ij i cd ab
,ij d ,i ab,c

2

12B f C f g g gn 1 2

+ H

 
 
 
 
 
 
 
 
         
  
   − +−      

. (66) 

This time, where we only have two equations instead of three (!), we obtain the total mass for our 
Dirac equation derivation from (65) via (62) and (59) to (60) from both the quantum matter: 

 

( )( )( )
( )

( )

ij i cd ab i cd ab
,ij d ,i ab,c d ,i ac,b

ij i cd ab
,ij d ,i ab,c

i cd
d ,i c, c, c, ,c

i ab i ab
b, ,ba ,i ,i b,a

12n B f C f g g g nC f g g gn 1 2g
12B f C f g g gn 1 2

1 1 1C f g g ng ng ng
2 2 2

g gC f g C f g g C

+ H
αβ

α β α β β α αβ

β α βα α β

  ⋅⋅ + −−     
  − +−    

 − − − + 
 

−− − −( )i ab
,i b,af g gβ α

 
 
 
 
 
 
 
 
 
 
 

 (67) 

and the curvature terms: 

 2F 1R R g
F' 2

+ Hαβ αβ

  − ⋅    
. (68) 

The Dirac equation we then obtain, thereby following the path of setting (66) into (51), resulting in (65) 
and performing the rest of the derivation as given above, would seal the quantum gravity calculation. 
In the case of metrics of constants, (67) and (68) simplify dramatically and make (66) to an almost 
Klein-Gordon-like classical equation: 

 ( )2 ij
,ij

1M f 2 B f n 1n 1 2
+ H  − = ⋅ ⋅ ⋅ −−     

. (69) 

One would only need to demand ij ijB I g= ⋅  to truly have a Klein-Gordon equation. 

Now we do not only know where the Dirac equation and the Dirac spinors (see [5, 6], section “The 
Bianchi Separator”) are coming from, but also how to derive a Dirac equation in a curved space-time 
and an arbitrary number of dimensions. We have also learned that the linearity of the Dirac equation 
requires a certain restriction with respect to the wave function solutions, namely (24). 

3.1.1.2.4 Towards the Dirac Spinors 
So far, the list of Dirac functions was classically postulated or derived as a by-product of the Everett 
multiverse theory (e.g., [2, 10]). Here now we intend to obtain this spinor by starting with a function 
vector within our metric derivation. At first, we introduce the following wave function: 
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N

D i
D i

i 1
f

=

= Φ ⋅Ψ = Φ ⋅Ψ∑ , (70) 

within the wrapper F: 

 [ ]
N

D i
j j j D j i

i 1
F F F f F F

=

  = = = Φ ⋅Ψ = Φ ⋅Ψ   
 
∑ , (71) 

and would then obtain from (51): 

 ( )( )

G

* *

i cd
d ,i c, c, c, ,c

i ab i ab i ab
b, ,ba ,i ,i b,a ,i b,a

11 10 g gR R G
F2 F

2F 1R R g
F' 2

1 1 1C f g g ng ng ng
2 2 2

g gC f g C f g g C f g g

+ H

+ H

αβδ

αβ αβ
αβ αβ

αβ αβ

α β α β β α αβ

β α βα α β β α

     = ⋅δ + ⋅δ−           

  − ⋅    
 − − − + 
 

−− − −
=

+



( )( )( )
( )

( )

ij i cd ab i cd ab
,ij d ,i ab,c d ,i ac,b

ij i cd ab
,ij d ,i ab,c

ij
,i , j

G12n B f C f g g g nC f g g gn 1 2
1g 2B f C f g g gn 1 2

12 C f f H ' 1 nn 1 2

+ H

+ H

αβ

αβ

 
 
 
 
 
 
 
 

δ   ⋅⋅ + − −      
   − + −     
    − ⋅ − ⋅ −         

 (72) 

with: 

 

( )
( )

( ) ( )

D D D D D
, D D, D, , D, , D ,,

D D D
, D D, D ,,

D D D D
D, D, D , D ,D D

, , D D, , D D D D
D, , D D, , D

f

f

f f

αβ αβ α β β α αβαβ

α α αα

α β α β
α β α β

α β β α

= Φ ⋅Ψ = Φ ⋅Ψ +Φ ⋅Ψ +Φ ⋅Ψ +Φ ⋅Ψ

= Φ ⋅Ψ = Φ ⋅Ψ +Φ ⋅Ψ

 Φ ⋅Ψ ⋅Φ ⋅Ψ +Φ ⋅Ψ ⋅Φ ⋅Ψ
 = Φ ⋅Ψ Φ ⋅Ψ =
 +Φ ⋅Ψ ⋅Φ ⋅Ψ +Φ ⋅Ψ ⋅Φ ⋅Ψ 

. (73) 

This simplifies significantly when we assume one of the “vectors” to be a list (or whatever) of constants, 
because then we just have: 

 

( )
( )

( ) ( )

D D
, D D,,

D D
, D D,,

D D D D
, , D D D, D,, ,

f

f

f f

αβ αβαβ

α αα

α β α βα β

= Φ ⋅Ψ = Φ ⋅Ψ

= Φ ⋅Ψ = Φ ⋅Ψ

= Φ ⋅Ψ Φ ⋅Ψ = Φ ⋅Φ ⋅Ψ ⋅Ψ

. (74) 

As we have learned in [5, 6], section “The Bianchi Separator”, this gives us a great variety of options to 
produce linear field equations by applying the technique introduced and explained above. 
Here we just follow the path of the previous subsection, which is to say “The Dirac-Matter Separation”. 
Following all the steps there is easy because we only have to substitute the ordinary wave function f 
by our new scalar product one f . This gives us—instead of (65)—the following result: 
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 ( ) ( ) ( )( )2 ij 2
,i , j2

gF ' 10 g M f C f f n 1 4FF'' F ' n 6F 4F 2
Hαβ

αβ
 = + −−  + −  

 (75) 

plus the corresponding eigen equation: 

 
( )( )

( )( )( )

2

i cd
d ,i c, c, c, ,c

i ab i ab i ab
b, ,ba ,i ,i b,a ,i b,a

ij i cd ab i cd ab
,ij d ,i ab,c d ,i ac,b

g M f

2F 1R R g
F' 2

1 1 1C f g g ng ng ng
2 2 2

g gC f g C f g g C f g g

12n B f C f g g g nC f g g gn 1 2g

+ H

+ H

αβ

αβ αβ

α β α β β α αβ

β α βα α β β α

αβ

−

  − ⋅    
 − − − + 
 

−= − − −

 ⋅⋅ + −− 
 +

( )ij i cd ab
,ij d ,i ab,c

12B f C f g g gn 1 2

 
 
 
 
 
 
 
 
  
  
  
   − + −     

. (76) 

As in the subsection above (“The Dirac-Matter Separation”), we only have two equations and we obtain 
the total mass for our Dirac equation from (76) containing both the quantum matter: 

 ( )( )
( )( )( )

( )

i cd
d ,i c, c, c, ,c

i ab i ab i ab
b, ,ba ,i ,i b,a ,i b,a

ij i cd ab i cd ab
,ij d ,i ab,c d ,i ac,b

ij i cd ab
,ij d ,i ab,c

1 1 1C f g g ng ng ng
2 2 2

g gC f g C f g g C f g g

12n B f C f g g g nC f g g gn 1 2g
12B f C f g g gn 1 2

+ H

α β α β β α αβ

β α βα α β β α

αβ

 − − − + 
 

−− − −

 ⋅⋅ + −−  
 +

 − +−


 
 
 
 
 
  
  
  
  

    

 (77) 

and the curvature terms: 

 
2F 1R R g
F' 2

+ Hαβ αβ

  − ⋅    
. (78) 

The Dirac equation then seals the quantum gravity calculation. Thereby we have to remember that—
this time—our wave function is a scalar product and when choosing H’ accordingly (see above), we 
obtain: 

 

( )2 ij
,i , j2

2 2 ij
,i , j

2 2 ij
,i , j

gF ' 10 g M f C f f H 'n 1F 4F 2
g M f g C f f

0 M f C f f

Hαβ
αβ

αβ αβ

 = + −−  
 

= +

⇒ = +

. (79) 

Factorization yields: 

 ( )( )i j
,i , j0 M f i C f M f i C f= ⋅ + ⋅ ⋅ − ⋅ . (80) 

Now we incorporate (70) and obtain: 
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 ( )( )D i D D j D
D D,i D D, j0 M i C M i C= ⋅Φ ⋅Ψ + ⋅ Φ ⋅Ψ ⋅Φ ⋅Ψ − ⋅ Φ ⋅Ψ . (81) 

From there we can just factor out the list of constants DΨ . We realize that the list of functions in the 
original Dirac approach comes from a quantum gravity evaluation originating from the Einstein-Hilbert 
action with a scaled metric tensor. The scalar factor itself is a scalar product and explains the 
occurrence of the Dirac spinors in a natural way. We obtain the classical Dirac equations as follows: 

 
( ) ( )i D j D

D D,i D D, j

i
D D,i

0 M i C M i C

0 M i C

= ⋅Φ + ⋅ Φ ⋅Ψ ⋅Φ − ⋅ Φ ⋅Ψ

⇒ = ⋅Φ ± ⋅ Φ
, (82) 

which are quantum gravity Dirac equations when taking into account that the term for M comes as 
eigenvalue from the field equations (76). We simply substitute the—so far—unfixed objects Ci by the 
Dirac matrices and would have finished the derivation of the classical Dirac equation from a holistic 
quantum gravity approach (without incorporating any approximations): 

 i
D D,i0 M i= ⋅Φ ± ⋅ γ Φ . (83) 

We have generalized our approach elsewhere [5, 6] and seen that many Dirac spinors can be 
constructed at various scaling levels of scaled metrics (see [5, 6], section “The Bianchi Separator”). 

4 Some More Rigorous Considerations of the “Transformers 
Linearity” 

Having seen in the section above how a Dirac theory can be extracted from the quantum gravity field 
equations of a scaled metric tensor, we now want to investigate this transformation technique a bit 
more rigorously. Our intention is to get rid of the nonlinearity with respect to the metric volume 
function f when introducing a scaled metric of the type (1) or—more complex and flexible: 

 

A

A i
i 1

0

G g F

G g

αβαβ
=

αβαβ

= ⋅

=

∏ . (84) 

Concentrating on the simpler form (1) and the generalized Hamilton principle (2), we result in the 
quantum gravity field equations (3), which we would like to reshape a bit as follows: 
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Gαβ

 
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 
 
 
 
 
 
 
 δ
 
 
  
  
  
  
        . (85) 

We realize the term , ,f fα β⋅  as the one hindering us to obtain just one equation for the wrapper 

function F[f] in order to make the nonlinear differential terms in f to disappear. Hence, we are looking 
for a way to transform this factor into something which would mirror its scalar partner cd

,c ,df f g . Starting 

with the ansatz for the derivative of f as follows: 

 
k ik

, ,i

i
, k k ,i

f ?

f ?
α α

α α

⋅ = γ ϕ

⋅ = γ ϕ
, (86) 

we would obtain the following expression for our “problematic” factor , ,f fα β⋅ : 

 
ik j j ik

k kk ij
, , , , k ,i , j ,i , jf f f ? f ? g C

2
α β β α

α β α β αβ

γ γ + γ γ
⋅ = ⋅ ⋅ ⋅ = ϕ ϕ = ⋅ ϕ ϕ , (87) 

where we assumed to apply something similar to the Dirac matrices, because we know that these 
satisfy the conditions: 

 g I ; g I
2 2

α β β α
α β β ααβ

αβ

γ γ + γ γγ γ + γ γ
⋅ = ⋅ = . (88) 

Thereby the object I is known to be the unit matrix and hence, we better write: 

 ij ijg I ; g I
2 2

α β β α
α β β ααβ

αβ

γ γ + γ γγ γ + γ γ
⋅ = ⋅ = . (89) 

The objects in (87), however, should—at the moment—be understood more generally and 
undetermined. Consequently, we may also demand the following: 

 
ik j j ik

k kk ij
, ab, , ab, k ,i ab, j ,i ab, jf g f ? g ? g C

2
α β β α

α β α β αβ

γ γ + γ γ
⋅ = ⋅ ⋅ ⋅ = ϕ Γ = ⋅ ϕ Γ , (90) 

and: 
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= =

γ γ + γ γ γ γ + γ γ
= ϕ + ϕ

γ γ + γ γ
=

k
ij

,i ,ijg C
2 αβϕ + ⋅ ϕ

. (91) 

Note that the auxiliary metric abΓ  should not be mistaken for the affine connection c
abΓ , which should 

not be a problem as the latter always has three indices and not two as the metric has. Now we assume 
that we are able to find objects (matrices, metrics, and wave functions) allowing us to even demand: 

 
ik j j ik

k kk ij
, , , , k ,i , j ,i , jf f f ? f ? f f g C f f

2
α β β α

α β α β αβ

γ γ + γ γ
⋅ = ⋅ ⋅ ⋅ = = ⋅ , (92) 

 
ik j j ik

k kk ij
, ab, , ab, k ,i ab, j ,i ab, jf g f ? g ? f g g C f g

2
α β β α

α β α β αβ

γ γ + γ γ
⋅ = ⋅ ⋅ ⋅ = = ⋅ , (93) 

and: 
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( ) ( ) ( ) ( )

ik ik
,i k ,i k, ,k k
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=

k
ij

,i ,ijf g C f
2 αβ+ ⋅

. (94) 

We see that—so far—no function vector / list of functions / spinor is of need, but when we intend to 
separate (factorize), for instance (92), we detect some inconsistencies. We assume f to be a list of 
functions and start with the following trial for a split-up: 

 

ik j j ik
k kD D k D Aij D

, A, , A, k ,i A, j D ,i A, j

iA j j iA
D Dij Aij D D j Di A

D ,i A, j ,i A, j A , j D,i

f f f ? f ? f f g C f f
2

g B B f f f f g E E f f
2

α β β α
α β α β αβ

α β β α
αβ αβ

γ γ + γ γ
⋅ = ⋅ ⋅ ⋅ = = ⋅

γ γ + γ γ
= ⋅ = =

. (95) 

We realize that the rank of the product j Di A
A , j D,iE E f f  on the right-hand side in the last line must be 2 

and hence, some kind of matrix. Thus, we better write (?):  

 
j Di A

, , A , j D,i

D C Bj D Fi C
A , E , A B , j E F ,i

g

f f g E f E f
α β αβ

α β αβ

⋅ =

⇒ ⋅ =

f f E E f f
. (96) 

Of course, this could be made a scalar (thereby not counting the derivatives, of course) again via: 
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 D C Bj D Fi C D A Bj D Fi A
, , A , D , A B , j D F ,i A , D , A B , j D F ,if f f f g E f E f f f g E f E fα β α β αβ α β αβ⇒ ⋅ = ⋅ = ⇒ ⋅ = . (97) 

As an “observer” would see the latter terms just as what it—apparently—is, namely, a product of two 
gradients from a scalar: 

 D A Bj D Fi A
A , D , A B , j D F ,i , ,f f g E f E f f fα β αβ α β⋅ = = ⇒ = ⋅ , (98) 

we can handle it as a scalar as long as we do not want to split the product up. This leads to the Klein-
Gordon equivalent of our quantum gravity field equations. Thereby, when consequently performing 
the substitution in (85), without considering the split-up option at this stage, yields: 
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where we can simplify as follows: 
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Fixing F[f] to the function given in (5) results in: 
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+ ⋅  

 −  
− −  + 

ij cd ab
,i bd ac, j

1 g
2

nC f g g g g

+ H αβ

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
   
      ⋅        
    −   

. (102) 

It was already shown elsewhere that under certain conditions and metrics this leads to the classical 
quantum equation of Klein-Gordon type (see for instance [5, 6], sub-section “Variation Linearity” 
above). 

4.1 Why the Internal f-List or Spinor Structure? 

As we had no need to apply the split-up option residing within (96) yet, we may wonder why bothering 
about such internal or spinor options at all? 
Reconsidering our critical nonlinear factor , ,f fα β⋅ , where we in principle just want a substitution of 

the kind: 

 

Bj D Fi A
A B , j D F ,i

Bj D Fi C
, , A B , j D F ,i

Bj D Fi A
A B , j D F ,i

E f E f

f f g E f E f

E f E f
α β αβ

 
  ⋅ →  
 
  

, (103) 

we don’t immediately see the need for f-lists / spinors. 
When trying to find such a transformation, one might start with the following approach: 

 
ab ab

ab
, , , , ,a ,b

g g gf f f f g f f
n nα β α β αβ⋅ = ⋅ → ⋅ . (104) 

In order to be allowed to substitute the arrow by an equal sign, we either have to assume very special 
metrics gab and a function f, or we resort to the Dirac option with a list of functions (spinors) and 
demand the following: 



 

30 
 

 

Ei Fj
A E,i B F, jA, B,

C D Ei C Fj D
, , A , B , A E , B F ,

E f E ff f

f f f f g E f E f
α β

α β α β αβ α β

 ⋅⋅ 
  

⋅ → ⋅ = ⋅  
  

    

, (105) 

where we have to find the objects Ei Fj
A BE ,E  and the f-lists (or f-spinors) in order to fulfill the condition 

(105). 

4.2 Dirac Split-Up Option(s) 

4.2.1 The Matrix Option 
Assuming the latter equation to produce eigenvalue solutions for f as follows: 

 

( )

( )

( )( )

2
f

j ik j ik
k , j k , j ij

,i ,ij

j ik j ik
kb a, j ka b, j ab ij

,i ,ij

ab abij
a b, j , j a b, j a b, j,i

dcd d
d c, j c, j

ij
,i

F 'g M f C
F

f g C f n 22

g g f n C f
2

F'R g g g n g g g g g gC f2F
g gg g g ng ng
2 2C f

αβ

β α α β
αβ

αβ

αβ α β βα α β β α

β α
β α α

− + =

 γ γ + γ γ
+ ⋅  −

 
 γ γ + γ γ

+ + ⋅ 
 

− − ⋅ − ++

− −
= +

( )

c, j

2
ab

, j ab, j

j ik j ik
kb a, j ka b, j ab ij

,i ,ij

ij ab
,i ab, j

ij cd
,i bd

n ng g g g
2 2

2 g f n C f
2n 1F'R

nC f g g2F

nC f g g

β

αβ αβ

  
  
  
  
  
  
  
  
  

    
        
   + +      

  γ γ + γ γ
+ ⋅  

 −  
− −  + 

− ab
ac, j

1 g
2

g g

+ H αβ

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
   
      ⋅        
       

 (106) 

gives us: 

 ( ) ( ) ( )( ) ( ) ( )( )22 ij
f ,i , j2

gF 'g M f C C f f n 2 1 2 F' 4FF''n 6n 1F 8F
Hαβ

αβ− + = + − +−− . (107) 

Please note that the setting of f+Cf does not compromise the evaluation as the constant factor would 
always vanish on the right-hand side of the equation above with a simple transformation of the type: 

 ff f C→ − . (108) 

Now we apply the following condition again: 
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( ) ( )

[ ]

[ ]
f

H
f 0

1

4
f

H
f 0 f1

1

e d

1

2

f

4FF'' F ' n 6
F' H

4

'

2

4

F

n 2e

n

F

d n 2

e

n-2

C

C C

C
φ

φ

⋅ φ


 − + ⋅ ⋅ φ ⋅ > 



+ −
= ⋅

⋅

⇒

∫

= 


=

∫ , (109) 

and solve it for the following setting H’=H’[f]=Y/f only for the cases n>2, which yields: 

 

( ) ( )

( )
[ ]( )

4
1 Y

f1 f 0

4

f

2

1 f 0

Y 1,n 2C f

C ln Y 1,n 2f

4FF'' F ' n 6 F'F ' H ' Y
4F f

F

F

n-2

n-2

C

C

+

+ −
= ⋅ =



 
⋅ ≠ − >+ 

 
 ⋅ + = − >

⋅

=

= 

⇒

. (110) 

Consequently, we obtain from (107) the following (where we already used the transformation (108)): 

 

( ) ( )( )

( ) ( )( )

( ) ( )( )

2 ij
,i , j

2 ij
,i , j

2 2 ij
,i , j

gF 'g M f C f f n 2 1 2 F'H 'n 1F 2F

1M f C f f n 2 1 2 H 'n 12

YM f C f f n 2 1 2n 12

H

H

H

αβ
αβ− = + −−

⇒

− = + −−

⇒

− = + −−

. (111) 

Introducing the indices D, A for a list of functions f as shown in (95) and (96), the last line in (111) 
evolves to: 

 

( ) ( )( )

( ) ( )( )

( ) ( )( )

( ) ( )( )
2

2

2 2 ij
,i , j

2 j Di A
A , j D,i

2 D C Bj D Fi C
A E A B , j E F ,i

Mm
n 2 1 2n 1

2

2 D C Bj D Fi C
A E A B , j E F ,i

YM f C f f n 2 1 2n 12
n 2 1 2n 10 M Y

2
n 2 1 2n 1M f f Y E f E f

2

0 m f f Y E f E f

H

H

H

H

=
+ −−

− = + −−

+ −−= ⋅ + ⋅ ⋅

+ −−= ⋅ + ⋅ ⋅

→

= ⋅ + ⋅

f f E E f f

. (112) 

Thereby we have not fixed the parameter Y yet. It is clear that the product of the E-objects must be 
matrices (c.f. equations (95), (96)). Factorization leads to: 
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( )

( ) ( )

2 D C Bj D Fi C
A E A B , j E F ,i

Y 1

0

2 D C Bj D Fi C C Bj D D Fi C
A E A B , j E F ,i E A B , j A E F ,i

D Bj D C Fi C
A A B , j E E F ,i

0 m f f Y E f E f

m f f E f E f i m f E f f E f

m f i E f m f i E f

=

=

= ⋅ + ⋅

→

= ⋅ + + ⋅ ⋅ −

= ⋅ + ⋅ ⋅ ⋅ − ⋅

  (113) 

and gives us the Dirac-type equations: 

 
D Bj D
A A B , j

C Fi C
E E F ,i

0 m f i E f

0 m f i E f

= ⋅ + ⋅

= ⋅ − ⋅
. (114) 

When investigating—as an example—the situation with a metric of constants, we obtain the 
eigenvalue equation from (106) as follows: 

 

( )

( )

j ik j ik
k , j k , j ij

,i ,ij

j ik j ik
2 kb a, j ka b, j ab ij

,i ,ij

j ik j ik
kb a, j ka b, j ab ij

,i ,ij

f g C f n 2F' 2
2FF'g M f g g f n C fF 2

F' 1g f n C f gn 1F 2 2
+ H

β α α β
αβ

αβ αβ

α

   γ γ + γ γ
 + ⋅   −

   
   γ γ + γ γ  = + + ⋅      

 γ γ + γ γ  − + ⋅ ⋅ −  
    β

 
 
 
 
 
 
 
 
 
 

. (115) 

Assuming that for a metric of constants the γ-objects in the terms 
j ik j ik
k , j k , j

2
β α α βγ γ + γ γ

 also only contain 

constants, further simplification is possible and gives us: 

 

( )( )

( )( )
( )

( )

ij ij
,ij ,ij

2 ij
,ij

ij
,ij

2 ij
,ij

1 g C f g n C fn 2 12g M f g C f 1 nn 11 2n C f gn 1 2

1M f C f n 1n 1 2

+ H
+ H

+ H

αβ αβ

αβ αβ

αβ

 ⋅ + ⋅−     = = − ⋅−        − ⋅ ⋅−     
⇒

  = − −−     

. (116) 

Now we use the definition for m from (112), which yields: 

 
( ) ( )( )

( )2 ij
,ij

2 ij 2 ij
,ij ,ij

n 2 1 2 1n 1m f C f n 1n 12 2
m f C f m f C f 0

H + H + −  − = − −−     
= − ⇒ + =

. (117) 

Applying (95), (96), and factorizing the operator in (117) results in: 
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 ( )

( )
( )( )

2 ij 2 D Bj Di F
,ij A A F B ,ij

2 D Bj Di F 2 B D Bj Di F
A A F B ,ij A F A F ,i , j B

0

2 B D Bj Di D Bj B Di F
A F A F ,i , j F A , j A F ,i B

B Bj D Di F
A A , j F F ,i B

m f C f 0 m f E E f 0

0 m f E E f m E E f

m E E i m E E f

m i E m i E f

=

+ = ⇒ + =

⇒

= + = δ δ + ∂ ∂ =

 
 δ δ + ∂ ∂ + ⋅ ⋅ δ ∂ − δ ∂ 

= ⋅δ + ⋅ ∂ ⋅δ − ⋅ ∂



 (118) 

and gives us the Dirac-type equations: 

 
( )
( )

B Bj F F Di F F Di F
A A , j B A F i B A F B,i

D Di F D Di F D Di F
F F ,i B B F ,i B B F B,i

0 m i E f m f i E f m f i E f

0 m i E f m f i E f m f i E f

= ⋅δ + ⋅ ∂ = ⋅ + ⋅ ∂ = ⋅ + ⋅

= ⋅δ − ⋅ ∂ = ⋅ − ⋅ ∂ = ⋅ − ⋅
. (119) 

We recognize the classical spinor as a matrix object F
Bf . Comparison of (119) with (114): 

 
F Di F D Bj D
A F B,i A A B , j

D Di F C Fi C
B F B,i E E F ,i

0 m f i E f 0 m f i E f

0 m f i E f 0 m f i E f

= ⋅ + ⋅ = ⋅ + ⋅

= ⋅ − ⋅ = ⋅ − ⋅





 (120) 

shows perfect structural agreement and just leaves us with the quest of finding the right mathematical 
objects Di

FE , where we already identified the Dirac matrices as one possible option. 

4.2.2 The Classical Spinor or f-List Option 
For nostalgic reasons one might be interested in insisting on simple lists of f and so we rewrite (95), 
(96) as follows: 

 Ei Fj
A, B, A E,i B F, jf f g E f E fα β αβ⋅ = ⋅ . (121) 

“In effectivo”—so one might say—we have substituted the list of derivatives of a scalar function f by a 
list of derivatives of a list of functions fA in such a way that the metric tensor can be factored out. 
The subsequent evaluation (112) then becomes: 

 

( ) ( )( )

( ) ( )( )

( ) ( )( )
2

2

2 2 ij
,i , j

2 Ei Fj
A B A E,i B F, j

Mm
n 2 1 2n 1

2

2 Ei Fj
A B A E,i B F, j

YM f C f f n 2 1 2n 12
n 2 1 2n 10 M f f Y E f E f

2

0 m f f Y E f E f

H

H

H

=
+ −−

− = + −−

+ −−= ⋅ + ⋅ ⋅ ⋅

→

= ⋅ + ⋅ ⋅

. (122) 

The E-objects must still be matrices. The factorization leads to: 

 
( )

( ) ( )

2 Ei Fj
A B A E,i B F, j

Y 1

0

2 Ei Fj Ej Fj
A B A E,i B F, j B A E, j A B F, j

Ej Fi
A A E, j B B F,i

0 m f f Y E f E f

m f f Y E f E f i m f E f f E f

m f i E f m f i E f

=

=

= ⋅ + ⋅ ⋅

→

= ⋅ + ⋅ ⋅ + ⋅ ⋅ ⋅ − ⋅

= ⋅ + ⋅ ⋅ ⋅ − ⋅

  (123) 
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and gives us the new—“mass-spinor-like”—Dirac-type equations: 

 
Ej

A A E, j

Fi
B B F,i

0 m f i E f

0 m f i E f

= ⋅ + ⋅

= ⋅ − ⋅
. (124) 

It should be noted that the factorization in (123) requires us to demand the permutability of the indices 

A and B in the term ( )Ej Fj
B A E, j A B F, jf E f f E f⋅ − ⋅ . 

The corresponding evaluation from (118) then changes to: 

 ( )

( )
( )( )

2 ij 2 Bj Ci
A A,ij A A B C,ij

2 Bj Ci 2 B C Bj Ci
A A B C,ij A B A B ,i , j C

0

2 B C Bj Ci C Bj B Ci
A B A B ,i , j B A , j A B ,i C

B Bj C Ci
A A , j B B ,i C

m f C f 0 m f E E f 0

0 m f E E f m E E f

m E E i m E E f

m i E m i E f

=

+ = ⇒ ⋅ + =

⇒

= ⋅ + = δ δ + ∂ ∂

 
 = δ δ + ∂ ∂ + ⋅ ⋅ δ ∂ − δ ∂ 

= ⋅δ + ⋅ ∂ ⋅δ − ⋅ ∂



, (125) 

and—as we can interchange the signs of the two factors / operators: 

 ( )( ) ( )( )B Bj C Ci B Bj C Ci
A A , j B B ,i C A A , j B B ,i C0 m i E m i E f m i E m i E f= ⋅δ + ⋅ ∂ ⋅δ − ⋅ ∂ = ⋅δ − ⋅ ∂ ⋅δ + ⋅ ∂ , (126) 

this gives us the Dirac-type equations: 

 
( )
( )

C Ci
B B ,i C

C Ci
B B ,i C

0 m i E f

0 m i E f

= ⋅δ − ⋅ ∂

= ⋅δ + ⋅ ∂
. (127) 

Comparison of (124) with (125) shows perfect structural agreement: 

 
( )
( )

C Ci Cj Fi
B B ,i C B B C, j B B F,i

C Ci Ej Ej
B B ,i C B B E, j A A E, j

0 m i E f m f i E f m f i E f

0 m i E f m f i E f m f i E f

= ⋅δ − ⋅ ∂ = ⋅ − ⋅ = ⋅ − ⋅

= ⋅δ + ⋅ ∂ = ⋅ + ⋅ = ⋅ + ⋅
 (128) 

and, just as before with the matrix-like f-spinors, leaves us with the quest of finding the right 
mathematical objects Di

FE , where we already identified the Dirac matrices as one possible option. 

4.2.3 The Introduction of “Mass Spinors” 
Insisting on f remaining just a scalar function, we rewrite (95), (96) as follows: 

 Bj Ai
, , A , j B ,if f g E f E fα β αβ⋅ = . (129) 

The subsequent evaluation (112) then becomes: 

 

( ) ( )( )

( ) ( )( )

( ) ( )( )
2

2

2 2 ij
,i , j

2 Bj Ai
A , j B ,i

Mm
n 2 1 2n 1

2

2 Bj Ai
A , j B ,i

YM f C f f n 2 1 2n 12
n 2 1 2n 10 M f f Y E f E f

2

0 m f f Y E f E f

H

H

H

=
+ −−

− = + −−

+ −−= ⋅ + ⋅ ⋅

→

= ⋅ + ⋅

. (130) 
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As already said before (c.f. equations (95), (96)), it is clear that the E-objects must be matrices. It is also 
clear that this time, with f being a scalar, the matrix-character has to be taken on by the masses. Thus, 
factorization leads to: 

 
( )

( ) ( )

2 Bj Ai B A Bj Ai
A , j B ,i A B A , j B ,i

Y 1

0

B A Bj Ai A Bj B Ai
A B A , j B ,i B A , j A B ,i

B Bj A Ai
A A , j B B ,i

0 m f f Y E f E f m m f f Y E f E f

m m f f E f E f i m f E f m f E f

m f i E f m f i E f

=

=

= ⋅ + ⋅ = ⋅ ⋅ ⋅ + ⋅

→

= ⋅ ⋅ ⋅ + + ⋅ ⋅ ⋅ − ⋅ ⋅

= ⋅ + ⋅ ⋅ ⋅ − ⋅

  (131) 

and gives us the new—“mass-spinor-like”—Dirac-type equations: 

 
B Bj
A A , j

A Ai
B B ,i

0 m f i E f

0 m f i E f

= ⋅ + ⋅

= ⋅ − ⋅
. (132) 

The corresponding evaluation from (118) then changes to: 

 ( )

( )
( )( )

2 ij B A Bj Ai
,ij A B A B ,ij

B A Bj Ai B A Bj Ai
A B A B ,ij A B A B ,i , j

0

B A Bj Ai A Bj B Ai
A B A B ,i , j B A , j A B ,i

B Bj A Ai
A A , j B B ,i

m f C f 0 m m f E E f 0

0 m m f E E f m m E E f

m m E E i m E m E f

m i E m i E f

=

+ = ⇒ ⋅ ⋅ + =

⇒

= ⋅ ⋅ + = ⋅ + ∂ ∂

 
 = ⋅ + ∂ ∂ + ⋅ ∂ − ∂ 

= + ⋅ ∂ − ⋅ ∂



 (133) 

and—as we can interchange the two factors / operators: 

 ( )( ) ( )( )B Bj A Ai A Ai B Bj
A A , j B B ,i B B ,i A A , j0 m i E m f i E f m f i E m i E f= + ⋅ ∂ ⋅ − ⋅ ∂ = ⋅ − ⋅ ∂ + ⋅ ∂ , (134) 

gives us the Dirac-type equations: 

 
( )
( )

B Bj
A A , j

A Ai
B B ,i

0 m i E f

0 m i E f

= + ⋅ ∂

= − ⋅ ∂
. (135) 

This time the mass takes on the character of the spinor in the form of a matrix object. Comparison of 
(132) with (135) shows perfect structural agreement and, just as before with the f-spinors, leaves us 
with the quest of finding the right mathematical objects Di

FE , where we already identified the Dirac 

matrices as one possible option. 

4.3 The Other Motivation for the Dirac Theory 

The usual justification for the introduction of the Dirac theory via a factorization of the Klein-Gordon 
equation resulted from the probability interpretation of Quantum Theory and certain negative 
probability densities. Here we saw that the Dirac technique is needed for the linearization of the 
quantum gravity field equations, leading to additive results with respect to the metric volume factors. 
In other words, we now have a metric justification for something which originally was postulated in 
order to get rid of some technical difficulties and impossible interpretations. 
Demanding additivity and thus, infinite dimensionality, we require linearity. The latter forces us to 
develop a generalized Dirac concept. 
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4.4 Generalization— “Transformers” 

Apart from the fact that we could easily generalize the considerations above to an arbitrary (non-
constant) metric tensor gαβ, we here intend to go even further and introduce metric transformations 
beyond the volume scaling, which means something of the type: 

 G gν
αβ α νβ= τ ⋅  (136) 

or even: 

 µ
µG gν

αβ αβ ν= τ ⋅ . (137) 

Thereby the transformation objects or “transformers” can be arbitrary objects, but they should still 
assure Gαβ to be a metric tensor with the usual tensor properties regarding symmetry and coordinate 
transformations.  
When now, just to give an example, demanding that Gαβ shall be a metric of constants (perhaps even 
with a volumetric scaling factor “Const”): 

 
00 01

01 11G o
const const
c n oCons st c nst tαβ

 
 
 
 

=



⋅







  

, (138) 

we would find the quantum gravity field equations (2) already being fulfilled even in their generalized 
form. Things of interest could still be happening in the level underneath, which is to say on the level of 

the metric gαβ and the transformers ν
ατ  and 

µν
αβτ . 

For the derivation of the corresponding field equations we have to evaluate the corresponding 
contravariant metric tensors of (136) and (137) first. Those would have to be: 

 1 µ
µG G g G G gβγ γ ν βγ γ βγ − γ β

αβ α α νβ α= δ ⇒ τ ⋅ = δ ⇒ = τ ⋅  (139) 

and: 

 µ 1
µG G g G G gβγ γ ν βγ γ βγ − βγ χδ

αβ α αβ ν α χδ= δ ⇒ τ ⋅ = δ ⇒ = τ ⋅ , (140) 

where the terms 1− ν
ατ , 

1µ− ν
αβτ  just define the inverse functions of ν

ατ  and µν
αβτ , respectively. 

The corresponding Ricci tensors can be evaluated as follows: 
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, (141) 
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The Ricci scalar, which we find via: 
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requires some considerations with respect to expressions like: 

 1ab µ 1 1ab 1ab µ
µ ,ab µ ,ab µ ,abg g g g g g g g g− χδ ν − αβ λκ − χδ µ ν λκ − χδ ν

χδ αβ ν λκ χδ ν λ κ χδ ντ τ ⋅ τ = τ ⋅ δ δ = τ ⋅ , (145) 

in order to exploit the full potential of simplification. As it does not provide much, however, we leave 
it to the interested reader to perform all such derivations. Here we are now—as before in this paper 
and the book [5]—interested in the cases of metrics of constants, where we obtain: 
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The Ricci scalars then consequently read: 
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4.4.1 A Simple Example: The Dirac Particle at Rest 
We introduce a transformer matrix of the following type: 
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. (150) 

Then we assume a metric of constants with: 
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 (151) 

and fix the wrapping functions Fi to: 

 [ ] [ ] [ ] [ ] [ ] [ ]0 0 0 1 1 1 2 2 3 3F f t f t ; F f t f t ; F f t 1; F f t 1       = = = =       . (152) 

Assuming a weak gravity condition: 
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, (153) 

we can fulfill the field equations with just the setting R*=0, which is to say: 
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. (154) 

Most interestingly, the solution can be obtained via a simple Dirac particle at rest approach with: 

 [ ] [ ] f 0C t
0 1 f1f t f t C e ⋅= = ⋅ . (155) 

Remembering that the Dirac theory [12] is based on a gravity free scalar equation, we might come to 
the conclusion that the metric equivalent of this theory could just be found via our approach here.  

5 Conclusions 
It was shown in the paper how the need for linearity of the quantum gravity field equations with 
respect to the volume scaling of the metric tensor provides us with a path to metrically obtain Dirac 
and Dirac-like field equations. 
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7 Appendix 
From Wikipedia, the free encyclopedia (https://en.wikipedia.org/wiki/Hamilton's_principle): 

In physics, Hamilton's principle is William Rowan Hamilton's formulation of the principle of 
stationary action. It states that the dynamics of a physical system are determined by a variational 
problem for a functional based on a single function, the Lagrangian, which may contain all physical 
information concerning the system and the forces acting on it. The variational problem is 
equivalent to and allows for the derivation of the differential equations of motion of the physical 
system. Although formulated originally for classical mechanics, Hamilton's principle also applies 
to classical fields such as the electromagnetic and gravitational fields, and plays an important role 
in quantum mechanics, quantum field theory and criticality theories. 

So, the definition of the Hamilton principle is based on its “formulation of the principle of stationary 
action”. In simpler words, the variation of such an action should be zero or, mathematically formulated, 
should be put as follows:  

 n

V

W 0 d x g Lδ = = δ ⋅ − ⋅∫ . (156) 

https://en.wikipedia.org/wiki/Annalen_der_Physik
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Here L stands for the Lagrangian, W the action, and g gives the determinant of the metric tensor, which 
describes the system in question within an arbitrary Riemann space-time with the coordinates x. 
Thereby, we used the Hilbert formulation of the Hamilton principle [1] in a slightly more general form. 
We were able to show in [2] that the original Hilbert variation does not only produce the Einstein field 
equations [3] but also contains the Quantum Theory [2, 4, 5]. It should be noted that, while the original 
Hilbert paper [1] started with the Ricci scalar R as the integral kernel, which is to say L=R, we here used 
a general Langrangian, because—as we will show later in this appendix—this generality—in principle—
is already contained inside the original Hilbert formulation. Even, as strange as it may sound at this 
point, general kernels with functions of the Ricci scalar f(R) [6] are already included (see [14]) in the 
Hilbert approach. 
But what if we lived in a universe where the only thing that was certain was uncertainty? 
One of the authors from [7], Dr. David Martin, always used the analogy of a moving fulcrum to 
demonstrate his uneasiness with the formulation (156) [13].  
In [7] we were able to show that the Hamilton principle itself hinders us to localize any system or object 
at a certain position. We also see that this contradicts the concept of particles. Everything seems to be 
permanently on the move or—rather—ever-jittering. 
But if this ever-jittering fulcrum was one of the fundamental properties of our universe, should we 
then not take this into account when formulating the laws of this very universe? Shouldn’t we better 
write (156) as follows: 

 n

V

W 0 d x g Lδ → ≅ δ ⋅ − ⋅∫ ? (157) 

And while we are at it, should we not start to investigate an even more general principle like: 

 ( ) n

V

W f W, x,g d x g Lαβδ → = δ ⋅ − ⋅∫ ? (158) 

The interesting aspect about this is that this investigation was already—partially—done by 
(surprise, surprise) e.g., Hilbert and Einstein. But instead of introducing and explaining it in this 

way, they have “hidden” their generalization inside other concepts like the introduction of a 
cosmological constant or— oh yes—the postulation of matter and its introduction via an ominous 

and purely postulated parameter LM, which is to say, a Lagrange matter term. Thereby, as we 
should explicitly point out here, the “hiding” never was intentionally, but just caused by the 

knowledge and understanding at the time. 

7.1 The Classical Hamilton Extremal Principle and How to Obtain Einstein’s 
General Theory of Relativity with Matter (!) and Quantum Theory… Also with 
Matter (!) 

The famous German mathematician David Hilbert [1], even though applying his technique only to 
derive the Einstein field equations for the General Theory of Relativity [3] in four dimensions,—in 
principle—extended the classical Hamilton principle to an arbitrary Riemann space-time with a very 
general variation by not only—as Hamilton and others had done—concentrating on the evolution of 
the given problem or system in time, but with respect to all its dimensions. His formulation of the 
Hamilton extremal principle looked as follows: 

 ( )( )n
M

V

W 0 d x g R 2 Lδ = = δ − ⋅ − Λ +∫ . (159) 

There we have the Ricci scalar of curvature R, the cosmological constant Λ, the Lagrange density of 
matter LM, and the determinant g of the metric tensor of the Riemann space-time gαβ. For historical 
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reasons, it should be mentioned that Hilbert’s original work [1] did not contain the cosmological 
constant because it was added later by Einstein in order to obtain a static universe, but this is not of 
any importance here. The evaluation of the so-called Einstein-Hilbert action (159) brought indeed the 
Einstein General Theory of Relativity [3], but it did not produce the other great theory physicists have 
found, which is the Quantum Theory. It was not before the author of this article here, about one 
hundred years after the publication of Hilbert’s paper [1], extended Hilbert’s approach by considering 
scaling factors to the metric tensor and showed that Quantum Theory already resides inside the 
sufficiently general General Theory of Relativity [2, 4, 7, 8, 9, 10]. We will not discuss the reason why 
this simple idea has not been tried out by other scientists before, but we may still express our 
amazement about the fact that a simple extension of the type: 

 [ ]G g F fαβ αβ= ⋅  (160) 

solves one of the greatest problems in science2, namely the unification of physics and that it took 
science more than 100 years to come up with the idea. Using the symbol G for the determinant of the 
scaled metric tensor Gαβ from (1) of the Riemann space-time, we can rewrite the Einstein-Hilbert action 
from (159) as follows: 

 ( )( )n q *
M

V

W 0 d x G F R 2 Lδ = = δ − ⋅ ⋅ − Λ +∫  (161) 

where we even used another generalization, namely the kernel extension Fq, which could also be 
possible and still converges to the classical form for F1. Here, which is to say in this paper, we will 
only consider examples with q=0, but for completeness and later investigation we shall mention that 
a comprehensive consideration of variational integrals for the cases of general q are to be found in [4]. 
Performing the variation in (161) with respect to the metric Gαβ and remembering that the Ricci 
curvature of such a metric (e.g., [7], appendix D) changes the whole variation to: 

 

( )( )

( )

( ) ( )

cd
,d ,c

n q *
M

V

2 F 2F g

ab cd ab
,ab ,d ab,c2

n q cd ab
M,d ac,b

ab
,a ,b

3

W 0 d x G F R 2 L

R 1 2g F F g g gn 1
F 2F

d x G F 2 LnF g g g

g F F
n 6n 1 4F

= ∆ −

δ = = δ − ⋅ ⋅ − Λ +

          + −−    
    = δ − ⋅ ⋅ − Λ +−    
   ⋅   − −−      

∫



V





∫
, (162) 

results in: 

 
2 This does not mean, of course, that we should not also look out for generalizations of the scaled metric and 
investigate those as we did in [10]. 
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( ) ( )

G

* *

ab ab
b, ,b, ,ab ,a

c, c, c,
ab ab cd

, b,a , b,a ,d
ab

,c ab,c

11 10 g gR R G
F2 F

g gF F g g F gn 2
1 11 g ng ngR 2 22F F g g F g g F g

1 1ng g g g
2 2

αβδ

αβ αβ
αβ αβ

β α βααβ αβ

α β α β β α
αβ

α β β α

αβ αβ

    = ⋅δ + ⋅δ− ⋅        

 −+ + −−

  − − −

− +  
 + + 
 

=



( ) ( )( )

( )

( )

( )
( )

cd
,d ,c

cd
, , ,c ,d2

2 F 2F g

ab cd ab ab
,ab ,d ab,c ,a ,b

2
cd ab

,d ac,b

1 F F g F F g3n 6 4 n4F

g2g F F g g g g F F1 R
n 6n 1 2F 4F 2n 1n F g g g

n 1

α β αβ

= ∆ −

αβ

 
 
 
  
  
     
 + ⋅ +− − 
 

   
   + ⋅   + + − ⋅−−    −  −  −  



Gαβ


 
 
 
 
 
 
 

δ 
 
 
 
 
 
 
  
 

, (163) 

when setting q=0 and assuming a vanishing cosmological constant. With a cosmological constant we 
have to write: 

 

( ) ( )

G

* *

ab ab
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c, c, c,
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αβδ
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β α βααβ αβ

α β α β β α

α β β α

αβ αβ

    = ⋅δ + ⋅δ− ⋅        

− + Λ ⋅

−+ + −−

 − −−
− + 

= + +




( ) ( )( )

( )

( )

( )

cd
, , ,c ,d2

cd
ab,d ,c

,a ,b
2cd ab

,d ac,b

G

1 F F g F F g3n 6 4 n4F
2 F 2F g

gg F F1
n 6n 1 n2F 4F 2F g g g

n 1

αβ

α β αβ

αβ

 
 
 
 

  
  
  

  
  

   δ     
 
 + ⋅ +− − 
   ∆ − ⋅   + + ⋅−−    −   −    . (164) 

For better recognition of the classical terms, we have reordered a bit and boxed the classical vacuum 
part of the Einstein field equations (double lines) and the cosmological constant term (single line). 
Everything else can be—no, represents (!)—matter or quantum effects or both. 
Thus, we also—quite boldly—have set the matter density LM equal to zero, because we see that already 
our simple metric scaling brings in quite some options for the construction of matter. It will be shown 
elsewhere [10] that there is much more which is based on the same technique. 
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7.2 The Principle of the Ever-Jittering Fulcrum and the Alternate Hamilton 
Principle 

We might bring forward two reasons why we could doubt the fundamentality of the Hamilton principle 
even in its most general form of the generalized Einstein-Hilbert action: 

a) The principle was postulated and never fundamentally derived. 
b) Even the formulation of this principle in its classical form (159) results in a variety of options 

where factors, constants, kernel adaptations, etc. could be added, so that the rigid setting of 
the integral to zero offers some doubt in itself. A calculation process which offers a variety of 
add-ons and options should not contain such a dogma. The result should be kept open and 
general. Dr. David Martin proposed this as the “tragedy of the jittering fulcrum” and we 
therefore named this principle “David’s principle of the ever-jittering fulcrum” [13]. It 
demands: 

 
n

g g
V

n *
G G

V

W ? d x g R

W ? d x G R

αβ αβ

αβ αβ

δ δ − ×

δ δ − ×

∫

∫

 

 

. (165) 

 
Fig. A1: David’s principle of the ever-jittering fulcrum cannot accept a dogmatic insistence on a zero 
outcome of the Einstein-Hilbert action (159) or (generalized and also bringing about the Quantum 

Theory) (161). Instead it should allow for all states and not just the extremal position (see the two red 
dots and the corresponding tangent planes in the picture). 

 
One of the simplest generalizations of the classical principle could be the linear one, which is illustrated 
in figure A1. It could be constructed as follows: 

 n n
g g

V V

d x g g W d x g Rh
αβ αβ

αβ
αβ− × ⋅ = δ = δ − ×∫ ∫ . (166) 

Thereby we have used the classical form with the unscaled metric tensor, respectively without setting 
the factor apart from the rest of the metric. Performing of the variation on the right-hand side and 
setting 

 gh Hαβ αβ= ⋅δ  (167) 

or—for the reason of—maximum generality even: 
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 ab
ab gh H Hαβ αβ αβ= ⋅δγ = ⋅δ  (168) 

just gives us the same result as we would obtain it when assuming a non-zero cosmological constant, 
because evaluation yields: 

 
n n

V V

n

V

Rd x g g g d x g R g g
2

R0 d x g R g g g
2

H

H

αβ αβ
αβ αβ αβ

αβ
αβ αβ αβ

 − × ⋅δ ⋅ = − × − δ 
 

 ⇒ = − × − − δ 
 

∫ ∫

∫
, (169) 

respectively: 

 
n ab n

ab
V V

n

V

Rd x g g d x g R g g
2

R0 d x g R g g g
2

H

H

αβ αβ
αβ αβ αβ

αβ
αβ αβ αβ

 − × ⋅δγ ⋅ = − × − δ 
 

 ⇒ = − × − − δ 
 

∫ ∫

∫
. (170) 

 
Simply setting H=-Λ (c.f. single-line boxed term in equation (164)) demonstrates this. 
Nothing else is the usage of a general functional term T, being considered a function of the coordinates 
of the system (perhaps even the metric tensor) in a general manner, as follows: 

 n n
g g

V V

d x g T W d x g R
αβ αβ

− × = δ = δ − ×∫ ∫ . (171) 

As before, performing of the variation on the right-hand side and setting 

 T T gαβ
αβ= ⋅δ  (172) 

gives us something which was classically postulated under the variational integral, namely the classical 
energy-matter tensor. This time, however, it simply pops up as a result of David’s principle of the 
jittering fulcrum and is equivalent to the introduction of the term LM under the variational integral. 
Evaluation yields: 

 
n n

V V

n

V

Rd x g T g d x g R g g
2

R0 d x g R g T g
2

αβ αβ
αβ αβ αβ

αβ
αβ αβ αβ

 − ⋅ ⋅δ = − × − δ 
 

 ⇒ = − × − − δ 
 

∫ ∫

∫
. (173) 

So, we see that in introducing a cosmological constant and in postulating a matter term, even 
Einstein and Hilbert already—in principle—“experimented” with a non-extremal setting for the 
Hamilton extremal principle. 
Apart from linear dependencies and other functions or functional terms, we could just assume a 
general outcome like: 

 ( ) n n
g g

V V

f W f d x g R W d x g R
αβ αβ

 = − × = δ = δ − × 
 
∫ ∫ . (174) 

This, however, would not give us any substantial hint where to move on, respectively, which of the 
many possible paths to follow. We therefore here start our investigation with the assumption of an 
eigen result for the variation as follows: 

 n n
g g

V V

W d x g R W d x g Rh h
αβ αβ

⋅ = ⋅ − × = δ = δ − ×∫ ∫ . (175) 
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This leads to: 

 n

V

1d x g R g R g g 0
2

+ hκλ κλ
κλ κλ

  − δ − ⋅ ⋅ δ =    ∫ . (176) 

As the term h  could always be expanded into an expression like: 

 g gh = H κλ
κλ⋅ δ , (177) 

we obtain from (176): 
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V

n

V

10 d x g R g R g g
2

1d x g R R g g
2

1R R g 0
2

+ H

+ H

+ H

κλ κλ
κλ κλ

κλ
κλ κλ

κλ κλ

  = − δ − ⋅ δ    

  = − − ⋅ δ    

 ⇒ − ⋅ = 
 

∫

∫ . (178) 

We realize that the term H can be a general scalar even if we would demand the term h  to be a 
constant. 
The complete equation when assuming a scaled metric tensor of the form (1) would read: 
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, (179) 

and in the case of metrics with constant components this equation simplifies to: 

 

( )( )

( ) ( )( )
( )

( )

ab
, ,ab

cd
, , ,c ,d2

ab
,a ,bab

,ab

1R F F g gn 22F
1 F F g F F g3n 6 4 n 04F

1g F Fn 1R g2g F n 62F 22F
+ H

αβ αβ αβ

α β αβ

αβ

  − +−  
  
  + ⋅ +− −  =  
 

   ⋅  −− − ⋅ + −      

. (180) 

7.2.1 The Question of Stability 
From purely mechanical considerations, one might assume that extremal solutions of the variational 
equation (165) correspond to more stable states than non-extremal solutions, and in fact we will find 
this in connection with the 3-generations problem, which we have discussed in [12]. 
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