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Infinite Orthogonal Dimensionality
Part Il: Why the Dirac Theory

By Dr. Norbert Schwarzer

1 Abstract

In part | [A] of this series we discussed the question of universal infinity and linearity. Thereby we
already saw that there are numerous ways to achieve linearity in a quantum gravity environment.

In this short paper we are now investigating a linearization technique which directly leads to the Dirac
theory. Our goal is the partial linearization of the quantum Einstein field equations by the means of a
special transformation.

[A] N. Schwarzer, “Infinite Orthogonal Dimensionality - Part I: Why We Need Linearity and How
Does This Make the Space-Time litter”, 2025, a SIO science paper, www.siomec.de

2 Introduction

We take it that the reader is familiar with the equations resulting from a Hilbert variation [1] with
respect to a scaled metric of the kind:

G,, = g, FIf]. (1)

If not, the necessary ingredients can be found in the appendix of this paper and our previous
publications [2—8]. The reader will also need to study our extended Hamilton principle (also appendix)
with the resulting field equations:
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Its expanded form in the case of a scaled metric (1) is given as follows:
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While in (3) we kept the structure of the classical field equations from Einstein’s General Theory of
Relativity [9], with the tensorial and the scalar Ricci parts well separated, in some cases it is useful to

use the following form:
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In [2—-8] it was shown how certain settings of the so-called wrapping function F[f] would help us to get
rid of some of the f-functional nonlinearities in (3). So, for instance, a setting of the kind:
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respectively.

3 A Strange Base-Vector and / or Dirac(!?!)-Linearity

So far (c.f. [3-8]), we have achieved linearity via certain restrictions to the variation or introduced
wrapping functions for the metric volume and/or the kernel of the variational integral. Now we want
to consider a possibility of obtaining linearity for the quantum field equations directly through the
solution for the functions F and f without any restrictions to the variation or the introduction of kernel
factors. Hence, our starting point shall be the field equation of the form (3), where we now seek to
find linearity with the following ansatz for F:

F=F[f]:F{f{nZI:Ci-xiﬂ. (13)

Thereby, for the reason of simplicity, we assume a metric of constants, which simplifies equation (3):
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We immediately see that with the condition:

G 'Cj =8;

and F chosen in accordance with (5), equation (14) simplifies to:
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As with our extreme simplicity chosen here, we would now have to demand f to just be:
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f:f[xi]:Z:Ci-xi (17)
i=0

and our solution does not seem to be of much practical use, but the interesting aspect is that for

metrics like the Minkowski metric, we have to realize that the Ci cannot just be ordinary numbers. In

fact, we would require certain matrixes in order to fulfill conditions like these:

I 0 0 O
C-C. =9 = 0 100 (18)
P00 of
0 0 0 1
We can easily see that the so-called base vectors e; would do the job, because we have:
€€ =g;. (19)

Surprisingly, it would also be matrices like the Dirac matrices that could help us here. As an example
we consider the space with n=4. There the Dirac matrices could be given as follows (all empty slots are
zeros):

(20)

As the metric tensor is connected with these matrices in the following way:
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f=f[x]=D 7% (23)

3.1 Towards a Generalization of the Idea = Transformers Linearity

Admittedly, the new technique seems to be a bit unwieldy in terms of writing volume and object sizes,
but it is pretty straightforward and might provide some advantages for the numerical handling of
complex tasks and complicated geometries as they occur in connection with complex systems like
internally structured fluids, for instance.

In this subsection we therefore intend to only roughly investigate the idea of using a transformation
similar to the one discussed above in order to achieve linearity for the quantum gravity field
equations... at least for the wave functions. Thereby we will concentrate on the effect of the various
versions of the field equations and how the transformation could be applied. In order to move on
quickly, we will at first be a bit “sloppy” with respect to the rigor of the incorporation of the technique.
Later in this paper, we will then investigate the method with more intensity and accuracy.

3.1.1 The Introduction of Metric Separation Matrices

When aiming towards a generalization of the approach from above, we might like to introduce the
following transformations:
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and that our settings above are definitively too simple to truly be of practical relevance. We would
probably end up in no more generality and / or flexibility than we have with (23), but we will keep the
brevity of (24) and in fact mean more something like this:
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where we immediately see that each component of the objects C; are matrices and the functions f
have to become vectors (spinors). So, for brevity, throughout this paper, the objects Cia have matrix
components, but we refrain from explicitly pointing this out everywhere and apply the shorter forms

(24) instead.
Now we can rewrite equation (14) as follows (thereby always remembering that the components of

the C;,Cij,Aé,Bij are no simple numbers but complex objects é;,éﬁ,gé,ﬁ‘j):
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We see that also the middle line results in the same equation for F[f] as we already have in the last line
(which represents the Ricci scalar part of the quantum Einstein field equations), namely:

10
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With F[f] being chosen in accordance with (5), we would consequently get rid of the nonlinear terms
and obtain:

Applying the recipe on the full equation (3) without any restrictions to the metric gives us:
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We realize that with the introduction of our “metric matrices” (26), here used without always pointing
out the matrix character of each component and abbreviating via (24), our quantum gravity equations
simplified with respect to the nonlinear terms. Our little Dirac-like trick allowed us to collect all f-
nonlinearity in just one term, namely (see box in the last line):

5GP
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From here now, linearization of the quantum field equations with respect to the wave function f is
straightforward.

3.1.1.1 The Metric Klein-Gordon Equation

3.1.1.1.1 Full Tensor and Scalar Separation
Using condition (5) again yields:

12



5GP

* * 1
0=(R op ~R (%-FHJGQB (E-Sg"ﬁ +g™ 6(%)}

1 1
g(xc,B __ng(xc,ﬁ __nch,tx
i ipc o cd 2 2
F' 2gaBB f,ij (1‘1—1)+Cdf,ig 1 1 (33)
ob 2F +Engaﬁ,c +5gaﬁgab,cgab
= i ab ip ab i _ab 8G*
+Caf,ig (gﬁb,a ~8gub ) - Caf,ig Zgba CBf,ig ab.a

2F _nciif,inggabgac,b

'[(n—1)(2n-B'f, +Cif g™ g, .
_R_£[< )(2n-Bf, +Cif 28”8, ) 'G”)g“ﬁ

Now we distinguish again rigorously between scalar terms times the metric tensor g« and tensor parts:

5GP

* * 1
Oz(R o —R (%JrHJGQB)[F-Sg“B +g%f 8(%)]

i 1 1 1
' Cof; Cd( —-—n -—n +—n j
RQB _;_F d ,1g gac,ﬁ 2 gac,B 2 ch,a 2 qu,C
+Ciaf,igab (ng,a ~Zgab ) \ C;figabgﬁb,a - Clgf’igabgmb,al _ (34)
) R —E (n _1)(2n .Bijf,ij +Cidf,ig0dgabgab,c) (l‘f‘HJ SG‘XB
_gaﬁ 2F _nCiif,inggabgaC,b 2
\ ij i ¢ 1 a
_E[Q’B Jf,ij (n - 1) + Cdf,ig ‘ Egab,cg bj

We demand:

2 i i ¢da i cd _al 1
2R (- (20w e ) -nCitee ) (1)

Fl
0= | (35)
_(2Bljf,ij (n—-1)+ Ciif,ing Egab,cgabj
and use the resulting solution for f to find the metric tensor via the remaining field equations:
i 1 1 1
' leing( ——ng, ,——Ng,  +—n j
0= Rqﬁ _L d-, gac,ﬁ 7 gac,ﬁ 2 g[}c,(x 7 gaB,c (36)

2F i a i a i a
+Caf,ig ° (gﬁb,a ~8gab ) - C(xf,ig bgﬁb,a - Cﬁf,ig bgab,a
3.1.1.1.2 Ricci Tensor and Ricci Scalar Separation

Starting directly with (33), we demand:

'

0=R - E((n — 1) (21‘1 : Bijf,ij + Ciif,inggabgab,c ) o nciif,ig(:dgabgac’b ) (37)
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for the determination of the wave function f, and subsequently obtain the following equation for the

determination of the metric tensor:

1 1
g(xc,B . ngac,ﬁ . nch,(x
70 Bif Clf g 2 2
0—R F'| <8up ,ij(n_1)+ al;8 |
=R ;—— 1 1 ab
P 2F + 2 ng(xﬁ,c + 2 gaﬁgab,cg
+C, 8" (2o~ 8paw )~ Caf 8 8poa — Cof i€ 20

(38)

We see that in this case the parameter H plays no role, and it would not matter whether we accept the
classical Hamilton extremal principle or rather keep it undogmatic and general as the “principle of the

ever-jittering fulcrum” [13].

3.1.1.1.3 Gravity and Matter Separation

Following the classical structure of the Einstein field equations, we could interpret everything not being

contained by the classical vacuum field equations, which—in our case with the generalized Hamilton

principle—would be:

O:(Raﬁ _R'(%-’_ngaﬁj’

as matter and separate consequently as follows:

1
R, —R'(E+ngaﬁ

1
) ) gocc,B _Engqc,ﬁ _Eng[}c,a
0 F' 2gaBBUf,ij (n—1)+Chf,ing 1
=\ ——= ab
2F +Engaﬁ,c +Egaﬁgab,cg
+C.8" (h0 ~ Zpan )~ Cof 8 8pna — Cof 8 8o

+£ (n_l)(zn.Biijj +Ci1f:ig0dgabgab,C) (l-i-ng
2F —nCif g 'g" g, , 2 *

Now we demand:
0=(n-1 (211 ' Bijf,ij +Cyf 28" g 0 ) -nC,f g“g"g,.,

for the determination of the wave function f and subsequently obtain the field equations:
R R ! +H
op ~ | S Bap

1 1
= ) gocc,B _Engac,[} _Engﬁc,u
F' 2gaBBUf,ij (n_1)+cllf,ig0d 1
2F +5ngu[3,c +Ega]3gab,cgab

+C;f,igab (ng,oc ~ 8pab ) - Ciotf,igabgﬁb,a - Ciﬁf,igabgab,a

39)

(40)

(41)

(42)

The latter equations, which are, obviously, field equations with matter, determine the metric tensor.

14



As being interested in completely reproducing the classical field equations, resulting from the Einstein-
Hilbert action with the extremal principle with the vacuum part:

1
OZ(RQB —ER'gaBj N

we can separate as follows:

1
R(LB - ER ’ gaB
1
B ) d gac,B _Engac,[} _Engﬁc,a
0 _L’ 2gchBUf,ij (n—l)"'ciif,igc 1 X
ZF +_ngcx[3,c +_gaBgab,cga

2F

2

2

+C;f,igab (gﬁb,a ~ pub ) - Cixf,igabg[}b,a - C;Sf,igabgcxb,a

[P0 B Cireee,) (

1

5+H)—R-H 8up

-nCif,g¥e"g,.,

Demanding the determination of the wave function f via the linear scalar equation:

2F

0= E[(n _1)(2H'Bijf,ij

cd _ab

cd _ab

—nCif,g“g™g..,

leaves us with the following matter field equation:

1
ch[} — ER . guB
g 1 ng 1 ng
— . . ac,p T A acB A Be,a
0— F' 2gaBBUf,ij (n_1)+cé£ing 2 1 2 ,
2F +_nga[3,c +_gaﬁgab,cgab

+Cyf g™'g gab,c)J'(l+Hj_R.H
2 b

2

2

+Cof 8™ (Zp0.0 ~ Zpan )~ Cof 187 8g00 — Cif 18" 80

where obviously the following term could be interpreted as the classical matter term:

F'

1 1
gac,B __nguc,B __nch,a

2ga[5Bijf,ij (n-1D+ Ciif,ing

2

2

2F

1 ab
+ 5 ng(x[},c + 5 gqﬁgab,cg

+C;f,igab (gﬁb,a ~ 8gub ) - Cixf,igabgﬁb,a - C}}f,igabgab,a

3.1.1.2 The Metric Dirac Equation

Going back to (31), leaving F unfixed and reordering:
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(44)

(45)

(46)

(47)



sGa[&

* * 1 1 1
0=|R" -R'|=+H |G, || = 5g"™+ “ﬁﬁ(—)
( o ( 2 ) o (F £ 78 F
1 1
gac,B __ngac,[} __nch,a
i ip cd 2 2
F' 2gaBB ﬁij(n_1)+Cdfig . .
w = = - ab
P 2F + 2 ngaB,c + 2 gaﬁgab,cg
+C;f,igab (g[}b,cx ~ 8pab ) - Ciaf,igabgﬁb,a - C;Sf,igabgab,a

[ o F(-n(20 B Citg e e, )| (1,
2F _nCif gt Eap
nC,fg7gvg,.,

. (49)

5GP

now gives us the opportunity to derive a quantum gravity Dirac equation. Knowing that, instead of
condition (5), respectively, (7), (8), and (9), we could also have any other condition in (48) like e.g.,

(with an arbitrary function H'[f] =

leading us to:

OH[f]
of

=H'):

4FF"+(F')’ (n—6)
4F

=F|.HV
4

£ H n_2 E
Cry+ [ "1 Sdo) Gy on>2
1

f
Cfo'_[eH[¢]d¢

C; e ! n=2

5GP
0=|R" ,-R’ 1+HG l~8°‘ﬁ+°‘5-61
B TR L) VR V
1
RQB—R-(E+HngB

1 1
gac,B _Engac,ﬁ _Engﬁc,a

F' 2quBijf,ij (n-1)+ Cidf,ing

1 a
2F +Engaﬁ,c +EgaBgab,cg °

+C,of 2% (Zp0.0 ~ Bpow )~ Cof 18 pa — Cif 128t

' (1’1—1) 21’1'Bijf1~ +Ci finggabga c
N F' ( i d i b,) _(1+H)gaﬁ
2F -nCyf g g"g,.,

gaﬁ ij LI (1 )j
—(n-1)—=CffF'H'|l-n-|=+H
(n-1) F [ 2
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(49)

; (50)



where we have separated what—we think—classically (with H=0) is the gravity part. We can reshape
(50) as follows:

SG(L[K

_ * « 1 1 ap op 1
SIS e
2F 1
F(Raﬁ —R‘(E‘FngaBj

Lo e 1 1 1
_Cdf,ig ‘ (gac,ﬁ _Engac,ﬁ _Engﬁc,a + Engaﬁ,cj

~(CF2™ (S = Zpan )~ Cof 1€ g0 — Cif €20 )

(g

(51

) 3G

((n -1) (2n : Bijf,ij + Cidf,inggabgab,c ) - nciif,inggabgac,b

1 a
+ga[3 ‘ _gab,cg bj

_(2Bijf,ij (n-D+ Ciif,igc >

2(n-DCL, 'H'(l‘“'(%w)j

We have a variety of options to solve this equation. Here we are only interested in extracting the
classical Dirac equation (though more general than the classical one as we keep both the coordinates
and the number of dimensions arbitrary).

3.1.1.2.1 Coupling Gravity and Quantum Effects

Thus, we start with the following separation:

2 2

2F 1
F(R“B —R-(EJrH)guﬁj

p 1 1 I
_Cdf,ig ‘ (gac,ﬁ __ngac,[} __nch,a +_ngaB,c)

2

—(Cof g™ (8po ~ 8paw )~ Chf €2 —Cif €20, )

. 52)
ij i cd _a i cd _al 1 (
((n_l)(Zn-BJﬁij +Cyf.g ‘g bg,db,c)—nCdf’ig g bgac,b)'(5+Hj
O_ 2 ijf i cd 1 ab
= -| 2B i (H—1)+Cdf,ig Egab,cg
—2(n—1)Cﬂ'f,if’j -H'(l—n-(%JrHjj
Now we demand an eigenvalue solution for the following term:
ij i cd _al i cd _al 1
((n—l)(2n~B’ﬁij +Cf g g bgab’c)—nCdf’ig g bgac,b).(E+H)
—M?’f = ) ) (53)
_(ZBUf,U (n - 1) + Cti:lf,ing Egab,cgabj
leading us to:
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0=M2f+2(n_1)Cijfiﬁj-H'(l—n-(%nLHD. (54)

The simplest path forward in order to obtain a good starting point for the Dirac equation is to apply a
function H’=H’[f]=Y/f. The corresponding solution for F[f] in the case of n>2 would be:

" 12 _ '
4FF"+(F') (n-6) oy F
4F

Kl . 55
F=Cy(Cpy+f"Y)=2 Y#-Ln>2 (53)

4

F=C,-(C;p+In[f])2 Y=-1Ln>2

=

By introducing the index i for a list of functions f;, (54) becomes®:

1
0=Mf’+2(n- I)Caﬁfi,afiaﬁ '(1 - (E+Hjj

2
M
m?=

72(“’”'[17“{%%))9 ) (56)
0 =m*f’ +C*f, f

i i, ti,p

Thereby we have set Y=1. The next step is to apply the known relation between the Dirac matrices,
which we here give in the original Dirac assumption with n=4, R=0, and for Cartesian coordinates (note
that all empty slots are standing for zeros; also note that we here only give the Dirac matrices in the
Cartesian, respectively the Minkowski case for a four-dimensional space-time):

-1 -1 . (57)

— 1 1
We also introduce the following relation with our matrix object C/ and the metric tensor, reading:

a. B B.,o
Ci - :%, (58)

and put (56) into the following form:

1 It can be shown that such a list naturally and without any postulations arises either within an Everett
“multiverse” approach (e.g., [10, 11]) or via the assumption of a multi-factor scaling of the metric tensor as we
are going to consider in subsection “Towards the Dirac Spinors” and the section “The Bianchi Separator” in our
book [5].
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o, B B.,o
£ fﬁ(w}l_jmz.fg:o
’ 2

= £ Ly +1- m’-f?

1?

£ 57" ~f " =F, " =7 =0
:(ﬂﬂyaiﬁyﬁ+d'lqn”ﬂ @iﬁﬁiﬁil§:5 +I-nf'ﬂ2J
Z(fi,ay“ +i-I-m-fi)(fi’ﬁyﬁ —i.I.m.fi): 0
(f7" =i-T-m-£) =0
=f 7"y +1-m* - £7 =0
= (f.,ay“ +i'I'm'fi)(fi,BYﬁ —i.I.m.fi): 0

1

In the last line we recognize the Dirac equations:

£,y fi-I-m-f,=0.

1

Unfortunately, in the interesting cases for n>2 and H=0 our equation (56) changes to:

0= MR —(n-1)-CF, £ (n-2)

l’I'l2 —7]\/[2
(-2

0=mf>-C*f, f

i i,a'i,p
In order to end up with the desired “+”-sign, which is to say with:

0=m’f*+C*f f

i iatip

again, we would need to demand Y=-1in (55).

(59)

(60)

(61)

(62)

More discussion on the connection with the classical case, including the full derivation with respect to
the eigenvalue equation of Klein-Gordon character in (53), is been given in [2] in the section “How to

Metrically Derive the Dirac Equation”.

3.1.1.2.2 Decoupling Gravity and Quantum Effects

As said before, there are many options to combine the various terms in the main equation (51). An
interesting one is the complete separation of Einstein’s gravity in the vacuum case and the quantum

effects. We therefore demand:
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2F 1
SETRENTRAR
1
:>OzR[x[3 —R(E‘i‘HJgaB
ij i cd _al i cd __al 1
((n—l)(zn'BJf,ij +Cdf,ig dg bgab,c)_ncdf,ig dg bgac,b)'(E+Hj
ij i ¢ 1 al
T8up _(2ij,ij (H—l)"‘cdf,ig ‘ Egab,cg bj

—2(n-1)Cf f, 'H'(l—n-(%JrHD

(63)
ie od 1 1 1
0 = _Cdf,ig gac,B _Engqc,ﬁ _Engﬁc,a +5ngq[3,c

_(Cif,igab (gﬁb,a ~8pab ) - Cixf,igabg[}b,a - C[i3f,igabgab,a )

Now we demand an eigenvalue solution for the following term:

—1)(2n-Bf, +Cif.g“e"g,, .
[(n )( i d,gggb,)_(1+ )
+gaﬁ

cd _ab 2

_nciif,ig g gac,b

i i c 1 al
—(2Blf,u (n—1)+Cyf g" 5 BB bj

i c 1 1 1
_g(xBsz = _Cdf,ig ¢ (gac,ﬁ _Engac,ﬁ _Engﬁc,a + Enguﬁ,cj ? (64)

- (Cilf,igab (gﬁb,a - gﬁa,b ) - C;f,igabgﬁb,a - Ciaf,igabgqb,a )

leading us, as before, to:
0=g, M f+g,2(n-1)C'f f, ~H'(1—n~(%+HD
= . (65)
0=M2f+2(n—1)Cf -H'(l—n-(%JrHD

3.1.1.2.3 The Dirac-Matter Separation

Finally, we investigate a separation of Dirac-matter and the Einstein field equations with matter
following from our quantum gravity equations (51) when splitting up and demanding an eigenvalue
solution as follows:
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2F 1
F(RO‘B —R'(EJrngaﬁj

i ¢ 1 1 1
_Cdf,ig ‘ (gac,[} __ngac,B __ngﬁc,(x +_nga[3,cj

2 2 2
i ab i ab i ab
_gaBM2 — _(Caf,ig (gﬁb,a_g[}a,b)_caf,ig ng,a_CBf,ig gab,a) _ (66)
~1)(2n-Bf, +Cif g“¢™g,, .
(n-1)( | d,gggb,)_(l+HJ
i cd _ab
+guﬁ _ncdf,ig g gac,b 2

ij i Ci 1 al
_(2ij,ij (n _1) + Cdfig ¢ Egab,cg b)

This time, where we only have two equations instead of three (!), we obtain the total mass for our
Dirac equation derivation from (65) via (62) and (59) to (60) from both the quantum matter:

((n-D(2n-B'f, +Cif g9 2,0, —ncﬁf,igmgabga@b)'(%’{ )

gaB 1
_(ZBUf,ij (n-D+ Ciif,ing Egab,cgab )
ic od 1 1 1
_Cdf,ig (gac,[} _Engac,ﬁ _Engﬁc,a +5ngaﬁ,cj (67)
_(C;f,igab (gﬁb,a ~8pab ) - Cionf,igabgﬁb,a - C;Sf,igabg(xb,a )
and the curvature terms:

2F 1
—| R .—R:|—+H . 68
F, ( aoff (2 jgaﬁj ( )

The Dirac equation we then obtain, thereby following the path of setting (66) into (51), resulting in (65)
and performing the rest of the derivation as given above, would seal the quantum gravity calculation.

In the case of metrics of constants, (67) and (68) simplify dramatically and make (66) to an almost
Klein-Gordon-like classical equation:

—M2f=2-(n_1)Bﬁﬁij-(n-GH{j—lj. (69)

One would only need to demand B = I'gij to truly have a Klein-Gordon equation.

Now we do not only know where the Dirac equation and the Dirac spinors (see [5, 6], section “The
Bianchi Separator”) are coming from, but also how to derive a Dirac equation in a curved space-time
and an arbitrary number of dimensions. We have also learned that the linearity of the Dirac equation
requires a certain restriction with respect to the wave function solutions, namely (24).

3.1.1.2.4 Towards the Dirac Spinors

So far, the list of Dirac functions was classically postulated or derived as a by-product of the Everett
multiverse theory (e.g., [2, 10]). Here now we intend to obtain this spinor by starting with a function
vector within our metric derivation. At first, we introduce the following wave function:
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N .
=0, -¥°=> 0, ¥, (70)

i=1

within the wrapper F:

F:Fj:FJ[X]:FJ[(DD'\PD]:FJ[ZNZ(DV‘PJ’ (71)

and would then obtain from (51):

SGa[S

_ * * 1 1 ap ap 1
S (e
2F 1
F(R“B _R(EJFngQﬁJ

e 1 1 1
_Cdx,g ‘ (gac,ﬁ __ngac,[} __ngBC,OL +_ngaﬁ,cj

2 2 2
_(C;X,igab (ng,a ~ 8pab ) - CLX,igabgﬁb,a - CE){igabgab,a )

) ((n -1) (2n . BUXJJ +CL K g™ g e ) —-nCiKg“g g, ) i (% +H

(72)
j 3G*P

ij i cl 1 al
+8up —(ZB% (n-1)+C kg™ 588 bj

_z(n_ncﬂﬁiﬁij-H'(l‘“'(%”{j)

with:
X, =(@) -\PD)’Q[} =@, P D, PO P D P
X, =(®, ¥°) =0, P +D,-P°, - (73)
D D D D
XX, = (@) %) (@, ¥7), = Dy, PP Dy, PP D PP D PP
al o B +Dp "PD,B @, PP + D, -‘{’D,a NN

This simplifies significantly when we assume one of the “vectors” to be a list (or whatever) of constants,
because then we just have:

Ko =(0,47),, <0, 9"
X,fx = (CDD P ),a =0, pP . (78)
Xan - (CDD .KPD),Q (CDD '\PD),B - (DD,a 'q)D,[s N O

As we have learned in [5, 6], section “The Bianchi Separator”, this gives us a great variety of options to
produce linear field equations by applying the technique introduced and explained above.

Here we just follow the path of the previous subsection, which is to say “The Dirac-Matter Separation”.
Following all the steps there is easy because we only have to substitute the ordinary wave function f
by our new scalar product one >1< . This gives us—instead of (65)—the following result:
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0= gaB%M2X+%§C%ﬁ§ (n-1(4FF"+(F')’ (n—6))(%_H j (75)

plus the corresponding eigen equation:

_gaBMZX

2F 1
IR, -R:|=+H
Fv ( ap (2 jgaﬁj
i o 1 1 1
_Cdxig ‘ (gac,ﬁ __ng(xc,ﬁ __ngﬁc,ot +_ngaﬁ,cj

2 2 2

- . | (76)
= ~(CLKE"™ (e~ B )~ CKig 8 — K" 8 )

((n B 1)(21’1 ) BUXU n C;Xigcdgabgab)c ) _ nC;X’inggabgac,b ) . (5 +Hj
+gaB

ij i c 1 al
_(2BJ)<,1J‘ (n - 1) + Cdx,ig ‘ Egab,cg b)

Asin the subsection above (“The Dirac-Matter Separation”), we only have two equations and we obtain
the total mass for our Dirac equation from (76) containing both the quantum matter:

i [& 1 1 1
_CXmg ‘ (gac,B __ng(lC,B __ng[}c,oc +_ngocB,cj

2 2 2
_<C;)<,agab (ng,a ~8pab ) - CLXigabgﬁb,a > CiBX,igabgab,a ) (77)
) . . 1
((n-1)(2n-B; +CiKg e"e,,. )-nCiX g e"e,., ) (5 +H )

+24p

ij i C 1 al
—(ZB% (n=1)+C Kg" 5 el "j

2 1
;(RQB —R-(EJrH)gaBj . (78)

The Dirac equation then seals the quantum gravity calculation. Thereby we have to remember that—
this time—our wave function is a scalar product and when choosing H' accordingly (see above), we
obtain:

and the curvature terms:

4F*
= quMZXZ + gaBCUXJX] . (79)
= 0=M’K*+C"KX|

F' goc ij ' 1
OzgaﬁFM2X+—ﬁCJ)§i){j(n_1)H (E—HJ

Factorization yields:
0=(M-X+i-CK )(M-X-i-C'X). (80)

Now we incorporate (70) and obtain:
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0=(M-@,- ¥’ +i-C'd, - ¥’)(M- 0, - ¥’ -i-Cld,, - ¥). (81)

From there we can just factor out the list of constants YP | We realize that the list of functions in the
original Dirac approach comes from a quantum gravity evaluation originating from the Einstein-Hilbert
action with a scaled metric tensor. The scalar factor itself is a scalar product and explains the

occurrence of the Dirac spinors in a natural way. We obtain the classical Dirac equations as follows:

. i D . j D

0=(M-®, +i-C'd,,)-¥° (M- @, —i-C'D,, )- ¥ )
=0=M-®,£i-C'D,,

which are quantum gravity Dirac equations when taking into account that the term for M comes as
eigenvalue from the field equations (76). We simply substitute the—so far—unfixed objects C' by the
Dirac matrices and would have finished the derivation of the classical Dirac equation from a holistic
guantum gravity approach (without incorporating any approximations):

0=M-®,+i-y'®,.. (83)

We have generalized our approach elsewhere [5, 6] and seen that many Dirac spinors can be
constructed at various scaling levels of scaled metrics (see [5, 6], section “The Bianchi Separator”).

4 Some More Rigorous Considerations of the “Transformers
Linearity”

Having seen in the section above how a Dirac theory can be extracted from the quantum gravity field
equations of a scaled metric tensor, we now want to investigate this transformation technique a bit
more rigorously. Our intention is to get rid of the nonlinearity with respect to the metric volume
function f when introducing a scaled metric of the type (1) or—more complex and flexible:

043 =8aup lf][Fl .
aﬁ = 8ap

Concentrating on the simpler form (1) and the generalized Hamilton principle (2), we result in the
quantum gravity field equations (3), which we would like to reshape a bit as follows:

(84)

24



5GP

* * 1
Oz(R o —R (%+H)Ga5j(g-6g“ﬁ +g* 8(%))

f,aB (n - 2) + f,abgaﬁgab + f,agab (gﬁb,a - gﬁa,b ) - f,o(gabgﬁb,a
- ! !
RaB _ " o gac,[} _Enguc,ﬁ _Engﬁc,u
2F —f’ﬁg Zob.a +f,dg 1 )
+Engaﬁ,c +5gaﬁgab,cg
[(n-D(28"F 0 + 88" B
— _ _1 ( ="Cd al;d b, ) .(1+H)guﬁ 5GP
2F —nf g "8, 2
2 "
£,-f,(n—2)(3(F") —2FF")
)2 "
+4_11:2 ) ((F)’ (4—n)—2FF")
) n- (85)

We realize the term f_ -fB as the one hindering us to obtain just one equation for the wrapper

function F[f] in order to make the nonlinear differential terms in f to disappear. Hence, we are looking
for a way to transform this factor into something which would mirror its scalar partner ﬁcﬁdng . Starting

with the ansatz for the derivative of f as follows:

f, N = Yi;(Pi
| - (86)
f,(x N = Vi P
we would obtain the following expression for our “problematic” factor f -f’[3 :
ik, j i ik
Yay +y ya ij
f,a 'f,ﬁ = f,(x '?k’f,ﬁ 7 =&(P,1(P,j =8aup 'CJ(P,i(P,ja (87)

2
where we assumed to apply something similar to the Dirac matrices, because we know that these

satisfy the conditions:

w o YV Y o Ya¥p F YRV (88)

g 2 4 of 2

Thereby the object | is known to be the unit matrix and hence, we better write:

g% T = viy” + Py : i = Ye¥s T VeV (89)

2 gaB 2
The objects in (87), however, should—at the moment—be understood more generally and

undetermined. Consequently, we may also demand the following:

ik, j ik
ya Y + Y YQ ij
f, “Bavp = f, '?k‘gab,ﬁ = x 5 L (P,irab,j =8 'CJ(P,irab,j ) (90)

and:
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ik ik
(vio,), 2+ (vies), %
2
j ik j ik j i i j i i
g (rees) rla (150s) vl (vE 0, o) +rl, (v + 1)
2 2 . (91)
_ TigYas + ViaVp, o+ Ve + Via¥p 0
2 i 2 g
_ qusyg:,j +Yf<an;J~
2

f

wp > f

k k _
w5 o (£, 00 )ﬁf?k -

Pt 84 'Cij(P,ij

Note that the auxiliary metric I",, should not be mistaken for the affine connection I, , which should

ab’?
not be a problem as the latter always has three indices and not two as the metric has. Now we assume
that we are able to find objects (matrices, metrics, and wave functions) allowing us to even demand:

fo - fg="0,-21;-2

i ik
'YaYkﬁ Yiﬁya _ ij
Tt e g g OOt )

YQY +y Y(x ij
f gabB_f gabB ?k_%f] abj = Bap ij,igab,j, (93)

and:

CARRITIARD

k k
fop = Fop 22 > (£,75) -2, =

B 2
ik j ik i ; i
_ ka (Y f ) . +’Yf<(x (’YB f,i)j YkB (YQ _lfl Yci(flj)+Yf(a (YB Jfl ,ka )
2 2 . (94)
VipYos + Tha¥oy o . Vig¥a +Vio¥p
—4 J 2 J f,i + 2 f,ij

j ik j ik
quﬂix,j Vo Vp,j ij
= > f,i +8up -C f,ij
We see that—so far—no function vector / list of functions / spinor is of need, but when we intend to

separate (factorize), for instance (92), we detect some inconsistencies. We assume f to be a list of
functions and start with the following trial for a split-up:

iy ik )
fD,a ) fA,B _ fD,u '?k'fA,B 9 = Yo Vip . ViV o fD,ifA,j —g, 'CgufD,ifA,j
(95)

A iiA
i i Yo YDB + YDBYa ; i
=8 'Blj)BAJfD,ifA,j = > fD,ifA,j = gaBELED fA,ij,i

We realize that the rank of the product Ei\EDifA’ij,i on the right-hand side in the last line must be 2
and hence, some kind of matrix. Thus, we better write (?):
_ j T DigA
f, f,=g,EAE"T" £, 96)
= fD 0 fEC,B = gaBEf\jf;,ngifFC,i

Of course, this could be made a scalar (thereby not counting the derivatives, of course) again via:
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=1, My =10 fp

DB~ gaBEijffI;,jEFDiflS,i = £ 'fS,B - gaﬁEijfE?,jEFDifﬁ»i' ©7)

Ned

As an “observer” would see the latter terms just as what it—apparently—is, namely, a product of two
gradients from a scalar:

fAD,a 'fg,s = gaﬁEijflg,jEFDifFA,i = = = f,a ’f,;sa (98)

we can handle it as a scalar as long as we do not want to split the product up. This leads to the Klein-
Gordon equivalent of our quantum gravity field equations. Thereby, when consequently performing
the substitution in (85), without considering the split-up option at this stage, yields:

Oz(R*aB -R’ GJFHJGQBJ

(’Yf{ﬁyg,j + Yf«ﬂg{,j £

2 5

ToTa; T ViV

+ - )
gaB ( 2

F' +gabCijf,i (gaagﬁb,j - gabgB(x,j)

_gabcijf,i (gaagﬁb,j + g[}agab,j)

i + gaB : Cljf’ljj(n - 2)

ab ij
g f,i +n'cjf,ijj

Eap 8o
gdﬁgac,j _THgac,j y ;

Zac Zac

o Ngp
+gCif,

gaBgab,jgab

i ik i ik
(Yi(bYa,j + Yf(a’Yb,j gabfi +n- Cl_]fljj
s F'|(n-1) 2 ’ ’ (IJFHJ
- 2F +Cijf,inggcdgabgab,j 2 S
_nCijf,inggbdgabgac,j
Cf f(n—2)(3(F")" - 2FF") . 99)
R

4F° +n'Cijf,if,j 1 >
+(n—1)‘[E+HJ(4FF"+(F') (n—6))

where we can simplify as follows:
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oz(R*mB ~-R’ (%HﬁleqBj

ik J ik
+ ] .
(YkﬁYa,] 5 Ykayﬁ,l f,i + gaB ) Cljf’ijJ(n — 2)

j . ik j . ik
YJ Ya,'+y Ay j . al ij
+qu (%g bf)i +nCJf’UJ
FV

R " OF +C'f, (gabgaagﬁb,j D 8g -g" (guagﬁb’i * gﬁ"‘g“b’j))
ij
+Cf; n2
2 ga[}] + gaﬁgab _]g
i ik j ik
Z(YibYa,j-i_’Y{(ayb,j gabf +n- Cljf
R F'| (n=1) 2 +H
2F +nC'f g"g,, . gaﬁ
_ncijf,inggbdgabgaCJ
(F')’ £7n 6-n"+n(n-1)- Hj(n 6)
Bt cip g

T (
+4FF"| 2n(n—1)- ( j— j
2
0= (R*QB -R’ (%JFHJGQBJ

j ik._'_ i ik' B
(Ykﬁy(x,] 2 YkQYB,J f’i +gaB 'Cuf,ijj(n _2)

j ik i ik
kaYa,j + YkaYb,j
tg | —

ab ij
g £i+n-CJ£ijj

2
F! . . .
RaB —E +Cuf,i (g bga(xgﬁb,j —n-gg,;—8 ° (guagﬁb,j + gBagab,j))
g o
Jf g (gdﬁgdcj _%B gOLC_] ; gBCJj
+C'f,
’ +£ +E ab
> 8aup.j 5 Zop8ab,i8
i ik i ik
2(’Yf(b’Ya,j + YIJ(aYb,j gabfi +n- Cljflj
R F (n-1) 2 ’ N (1+H)
oF +ncijf,igabgab,j 5 2

—nCijf:inggbdgabgac,j
g(x ij ! "
+ e (n-1) (0 (2H +D)=2)((E)’ (n-6) +4FF")
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Fixing F[f] to the function given in (5) results in:

{rw(onfo

yj ’Yg(,'—i_yjotyik,‘ i
( kB J2 k BJf7i+gaB.CJf,ij (n—2)
i ik i ik
4 . ;
g, (kaya,J . YiaVb,j gabf,i +Il'CUf’ijJ
Ry O (€780 Zps ~ 1 8oy~ " (Baa s  EpaBis )
a 2F B a0 SPb, j Ba,j 0a©Bb,j Baab,j
¢ g Lo
_ - g d(gdﬁgac,j _%ngac,j_ ; nch,j)
B +C'f,
’ n’ n -
+?gaﬁ,j +5gaﬁgab,jg
To¥as T ViaVo ;
P (no) (B e, 1
—| R—— , J=+ H
2F +ncljf,igabgab,j (2 jgaﬁ
ij c al (102)
—nCJf,ig dgbdg bgac,j

It was already shown elsewhere that under certain conditions and metrics this leads to the classical
quantum equation of Klein-Gordon type (see for instance [5, 6], sub-section “Variation Linearity”
above).

4.1 Why the Internal f-List or Spinor Structure?

As we had no need to apply the split-up option residing within (96) yet, we may wonder why bothering
about such internal or spinor options at all?

Reconsidering our critical nonlinear factor f -fB , where we in principle just want a substitution of
the kind:
Bj¢D FigA
EAJfB ,jEleF J
BjeD 1FipC
f, 'f,ﬁ — 84 E)f5 ,jEDfF il

BjeD 1FipA
EA fB ,jEDfF i

(103)

we don’t immediately see the need for f-lists / spinors.

When trying to find such a transformation, one might start with the following approach:

ab ab
_ gabg g
- f,a 'f,ﬁ — guﬁ f,a
n n

f -f

o B 'f,b-

(104)
In order to be allowed to substitute the arrow by an equal sign, we either have to assume very special

metrics ga» and a function f, or we resort to the Dirac option with a list of functions (spinors) and
demand the following:
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f,(x f,ﬁ - ff,oc f]];,ﬁ = g(xﬁ EiifEC,a ngD

where we have to find the objects E

(105).
4.2 Dirac Split-Up Option(s)

4.2.1 The Matrix Option

f

Ao

-f

B.p

Ei Fj
EA fE,i : EBfF,j

FB|°

Ei

Assuming the latter equation to produce eigenvalue solutions for f as follows:

ik ik
o+ A y
[Ykﬁ}’a’] ) YiaTh fi+g., 'Cﬂf,ij](n -2)
ik ik )
e, (’ka’Ya,J " Yiab,j gabfi +n-Clf,
R F' ij ab ab
@~ Hg +Cf (g 8a08pb,j TN 8paj 8 (gaagﬁb.j +gl3agab,j))
¢ g Lo
_ - g ‘ (gd[}gac,j _%nga&j - ; ngﬁcajj
B +C'f,
’ n? n ab
+7gaﬁ,j +Egaﬁgab,jg
ik ik
(’Y:(b'Ya,j +’Yf<a’yb,j gabf‘ +n Cljfj
i i
F' (n—]) 2 1
- - iie ab \STH
2F +nC'f;g7g,, ; 2
-nCf g%g,,8%g,,

gives us:

'

F
—g(}LBFM2 (f+Cf) =

F'
_guB?Mz (f+Cf)=

(105)

,Egj and the f-lists (or f-spinors) in order to fulfill the condition

(106)

81(;2 Ciff (n—1)(nH +1)=2)((F') (n—6)+4FF"). (107)

Please note that the setting of f+Cs does not compromise the evaluation as the constant factor would
always vanish on the right-hand side of the equation above with a simple transformation of the type:

f>f-C,.

Now we apply the following condition again:
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4FF"+(F')’ (n—6)

=F-H'

4F

4
¢ g M "2 (109)
Cio + IeHM -C;, n>2’
= F= 1
Cﬁ)‘j.eHMdd)
Cy-e ! n=2

and solve it for the following setting H’=H’[f]=Y/f only for the cases n>2, which yields:

" 1\2 _ '
4FF"+(F')" (n-6) oy F
4F

4 110
F=Cy+(Crp+f™)2 Y#-1n>2 (110)
=

4
F=C,-(C,o+In[f])2 Y=-Ln>2

Consequently, we obtain from (107) the following (where we already used the transformation (108)):

F ga 1 [}
—gaﬁFMf 2ﬁCJffJ(n N(n(2H +1)-2)F'H
=
_Mf=lc C'ff;(n=D(n(2H+D-2)H' . (111)
=

—M%f2 = % ”ffj(n D(n(2H +1)-2)

Introducing the indices D, A for a list of functions f as shown in (95) and (96), the last line in (111)
evolves to:

Y

~M*f? =—Cf f, (n-1)(n(2H +1)-2)

0=Mf-f+Y- ELEDifA,ij,i (n- D(n(2H+1)-2)

2
A A _ 2 1)-2
_ M2 £€ 1y EED e (0 1)(n(2H+ )-2) (112)
2_ M’
T oQHED-2)
= >

0=m’f, -ff +Y-EJfy E['fy

Thereby we have not fixed the parameter Y yet. It is clear that the product of the E-objects must be
matrices (c.f. equations (95), (96)). Factorization leads to:
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0=m’fy -fy +Y-EJf; EJfS,

Y=1

50 (113)
=m’fy £ +ERfy BUES, +i-m-(fFERE,  —fPELTY )
=(m-fY +i-EPfy | )-(m-fy —i-EJff )
and gives us the Dirac-type equations:
O=m-f? +i-E¥f>.
o omee (114)
O=m-fy —i-E fg;

When investigating—as an example—the situation with a metric of constants, we obtain the
eigenvalue equation from (106) as follows:

I .
o (Ykﬁ’Ya,J 2ykayﬁ7j f,i +ga[3 .Cljf,ij (n—2)
P 2F VisYas T VhaVo o i
gaBFM f= +gcxl3 (%g bf,i +n.CJf,ij . (115)
F' YioYas + Viaos o g, |2
e

i ik i ik
YigVeaj T ViaVp,j
2

] =g,,C'f (n—l)(l—n'(%ﬂqj)
_(n_l)(n'cijf,ij)'[EJrng%
- . (116)

1
MZf=—CJf,ﬁ<n—1>(“(§+H)‘lj

Assuming that for a metric of constants the y-objects in the terms also only contain

constants, further simplification is possible and gives us:

1 ij i
E(gaﬁ -Cf(n—-2)+ gypn- ij,ij)
gaﬁM2f =

Now we use the definition for m from (112), which yields:

m? (n—l)(n(22H+1)—2)f=—Ciifij(n_1)(n(%+H)—lj

m’f = -C'f, = m’*f + C'f; =0

(117)

Applying (95), (96), and factorizing the operator in (117) results in:
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m’f +C'f, =0=m’f, +EJEYf; =0
=
0=m’fy +EYEYfy = (m’5}8y +ENEY0 .0, )fy = (118)

=0
(mzs‘j\s{: +EVE'0,0,+i-m-(8YEYD , —3}E}'D, )] £l
=(m-8} +i-EJ0,)(m-87 —i-E}'0, )1,
and gives us the Dirac-type equations:

0=(m-8 +i-EY0)fy =m-f} +i-EY0,f5 =m-f} +i-EP'fy,

A . o (119)
0=(m-87 —i-Ed, )y =m-fy —i-E'8,fy =m-fy —i-EDf;,
We recognize the classical spinor as a matrix object f; . Comparison of (119) with (114):
O:rn-flf+i-EFDif§’i 2 O:m-ff+i-E§jf;j (120)
0=m-f2—i-EPff, 2 0=m-fS—i-E"f,

shows perfect structural agreement and just leaves us with the quest of finding the right mathematical
objects EFDi , Where we already identified the Dirac matrices as one possible option.

4.2.2 The Classical Spinor or f-List Option

For nostalgic reasons one might be interested in insisting on simple lists of f and so we rewrite (95),
(96) as follows:

fA,a ‘fB,;a = gaﬁEiifE,i 'ngF,j' (121)

“In effectivo” —so one might say—we have substituted the list of derivatives of a scalar function f by a
list of derivatives of a list of functions fa in such a way that the metric tensor can be factored out.
The subsequent evaluation (112) then becomes:

—M2f2 :%Cijﬁiﬁj (n-1)(n(2H+1)-2)

(n-1(n(2H+1)-2)
2 . (122)

0=M’f, -f, +Y-E/f, -Ef, |

oM
(n-D(n(2H+1)-2)
2

0=m’f, -f,+Y-EJf, - EJf,
The E-objects must still be matrices. The factorization leads to:
2 Ei Fj
O=mf, -f;+Y -E f; -EBJfRj
Y=1

-0 (123)
=m’f, -f, + Y -EJf, -EJf +i-m-(f,-EJf,  —f, -EQf, )

=(m-fA +i-E§jfE’j)~(1’n'fB—i'EFBifF,i)

33



and gives us the new—“mass-spinor-like” —Dirac-type equations:
0=m-f, +i-E%f_ .
P (124)
O=m-f, —1-Ejf;;

It should be noted that the factorization in (123) requires us to demand the permutability of the indices
A and B in the term (fB -Eijijj —f, -Egjfm).

The corresponding evaluation from (118) then changes to:

m’f, +C'f, , =0=>m’-f, +EJE{f. . =0
=
0=m’-f, + EPEgf, ; =(m’8}8; +EJES0 0, )f. | (125)

=0
= (mZSESE +EJES0,0,+i-m-(S5ERD  —8LE(d, )j f.
=(m-8% +i-E}0 )(m-85 —i-EF, )f,
and—as we can interchange the signs of the two factors / operators:
0=(m-8} +i-E8,)(m-8; ~i-Ego, )f. =(m-8% —i-E}, )(m-8; +i-Efo, )f.. (126)
this gives us the Dirac-type equations:

=(m-85 —i-E§o; )f.

| (127)
0=(m-85+i-E§o, )f.
Comparison of (124) with (125) shows perfect structural agreement:
=(m-85 —i-EF0, )fo =m-f, —i-EJf., =m-f, —i-ELf,, (128)

0=(m-85+i-EG0,)f. =m-f, +i-EJf,  =m-f, +i-EJf;

and, just as before with the matrix-like f-spinors, leaves us with the quest of finding the right

mathematical objects EFDi , Where we already identified the Dirac matrices as one possible option.

4.2.3 The Introduction of “Mass Spinors”

Insisting on f remaining just a scalar function, we rewrite (95), (96) as follows:
f f = go([3 BJf EA'f (129)
The subsequent evaluation (112) then becomes:
—M2f2 = = C'ff (n-1)(n(2H +1)-2)

(n—-1)(n(2H +1)-2)
2 : (130)

2 Bj A
0=M f-f+Y-EAJf’jEB f1
1’1’12_7M:Z
" (n-)(nQH+D-2)
2 N

0=m’f -f+Y-EJf EJ'f,
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As already said before (c.f. equations (95), (96)), it is clear that the E-objects must be matrices. It is also
clear that this time, with f being a scalar, the matrix-character has to be taken on by the masses. Thus,
factorization leads to:

0=m’f-f+Y-EYf Eff, =m} -my -f-f+Y-EJf EJ'f,

Y=1

=0 (131)
=m} -mj-f-f+EJf By, +i-(mg -£-EJf, —m]} -f.Egiﬁi)

=(m} £ +i-EJf,)-(mp - £ -i-E}'f, )
and gives us the new—"“mass-spinor-like” —Dirac-type equations:

0=m?-f+i-E%f,

N i (132)
O=my-f—i-E5'f,
The corresponding evaluation from (118) then changes to:
m’f +C'f, =0=m} -my -f + EJEJ'f, =0
=
0=m}-mp-f+EYE}T, =(m} -m} +EYE}0.0,)f (133)

=0
- (mi -mpy +EYE}'0,0,+i-(mpEYo, - m}E}D, )]f
=(m} +i-EYa,)(mp —i-Ej'o, )f
and—as we can interchange the two factors / operators:
0=(m} +i-EJo,)(my -f—i-Eya,)f =(mp-f—i-EF'0, )(m} +i-EY0,)f,  (134)
gives us the Dirac-type equations:

O:(m§+i-EiJ18’j)f. (139)
0=(mj—i-Epo,)f

This time the mass takes on the character of the spinor in the form of a matrix object. Comparison of
(132) with (135) shows perfect structural agreement and, just as before with the f-spinors, leaves us

with the quest of finding the right mathematical objects EFDi , where we already identified the Dirac

matrices as one possible option.

4.3 The Other Motivation for the Dirac Theory

The usual justification for the introduction of the Dirac theory via a factorization of the Klein-Gordon
equation resulted from the probability interpretation of Quantum Theory and certain negative
probability densities. Here we saw that the Dirac technique is needed for the linearization of the
guantum gravity field equations, leading to additive results with respect to the metric volume factors.
In other words, we now have a metric justification for something which originally was postulated in
order to get rid of some technical difficulties and impossible interpretations.

Demanding additivity and thus, infinite dimensionality, we require linearity. The latter forces us to
develop a generalized Dirac concept.
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4.4 Generalization— “Transformers”

Apart from the fact that we could easily generalize the considerations above to an arbitrary (non-
constant) metric tensor gqs, we here intend to go even further and introduce metric transformations
beyond the volume scaling, which means something of the type:

Gop =Ty 8y (136)
or even:
G =Thp 8y - (137)

Thereby the transformation objects or “transformers” can be arbitrary objects, but they should still
assure Gqp to be a metric tensor with the usual tensor properties regarding symmetry and coordinate
transformations.

When now, just to give an example, demanding that Gg shall be a metric of constants (perhaps even
with a volumetric scaling factor “Const”):

const,, const,
G,; =Const-| const,, const,; - |> (138)

we would find the quantum gravity field equations (2) already being fulfilled even in their generalized
form. Things of interest could still be happening in the level underneath, which is to say on the level of

the metric g3 and the transformers T, and T'&E .

For the derivation of the corresponding field equations we have to evaluate the corresponding
contravariant metric tensors of (136) and (137) first. Those would have to be:

G,G" =8/ = 1,-g,G"=5, = GM=1".g" (139)
and:
G,G" =8, = t-g.,G"=8 = G"=1".g", (140)

-1 “luv ) . . .
where the terms T, T 33 just define the inverse functions of T, and T‘&E , respectively.

The corresponding Ricci tensors can be evaluated as follows:
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The Ricci scalar, which we find via:
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LT T e T BB T TanaBi T T8 | s

_ kv kv kv Y
2 Tab guv,aﬁ Tab,aﬁgpv Tab,aguv,ﬁ Tab,ﬁgpv,a

uv kv v kv
—TBb . gpv,aa TBb,a(xguv Tﬁb,aguv,u T[Sb,ocguv,a

Tiw, L N e
Tac guv,(x Tac ,(xgpv de gpv,[} de,ﬁguv
— T—lab,t—lcd 2 T—laB Ak

xd Y XSgyn )mg

+ i nv uv nv uv
2 +<Tocc ' gpv,a + Tuc,agp.v ) ’ (T[_’yd ' gpv,b + Tﬁd,bguv )

nv iy Y Y
_(Tac ’ gpv,a + Tac,agp.v ) ) (Tﬁb ’ gp.v,d + Tﬁb,dgp,v )

%

—lab_—led [ 4BV | wv pv
_T ;51 ;ﬂ Tac gpv,[} +Tac,ﬁgpv +TBC gpv,a
uv pv uv
4 +TBc,aguv - TOLB ) guv,c - TaB,cguv
iy uv puv uv X3 5
x (2 (de “Cuva T Thaa8uv ) T "8uvid ~ Tab,a8uv )g g
, (144)
requires some considerations with respect to expressions like:
—lab %8, v —laf e _ —lab xS pev Ak _—lab %8 uv
T x?}g TaB guv,abr ws =T ng gpv,absk & =1 xég gpv,abg > (145)

in order to exploit the full potential of simplification. As it does not provide much, however, we leave
it to the interested reader to perform all such derivations. Here we are now—as before in this paper
and the book [5]—interested in the cases of metrics of constants, where we obtain:
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.y B p B xb
- 2 (Ta,abgpﬁ + Ta,aﬁgub - Ta,aﬂgpb - Tﬁ,aagp.b)g
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T T 1
o A m g " 3 n £ b 5 vd 146
R ap + 2 (Eta,agpc : Tb,ngd + Ta,agpc : TB,bgﬁd - Tu,aguc : TB,dgE_,bjg g ’ ( )
—la __-Ic
T
XYk B p g & xb 5 vd
- 4 (Ta,ﬁgpc + TB,ung - Ta,cgp[} )(zrb,aggd - ’ca,dggb )g g
—lab
10 uv nv nv Y %0
- 2 (Tuﬁ,abguv + Tab ,aﬁgp.v - Tab,aﬁgp.v - Tﬁb,augp.v )g
—| 4 T (1 & oy e v & %8
- 2 ETac ,(xgpv ’ de,ﬁgég ’Cac,agpv ’ TBd,bgF,C - T(xc,agp.v ’ TBb,dggg g g
—lab _—lcd
3" m [ uv pv uv 128 & 18 M
- 4 (Tac,ﬁgp.v + Tﬁc,(xgp.v - Taﬁ,cgpv )(2de,ag§(; - Tab,dga’;(; )g g . (147)
uv v nv v
_(Taﬁ,ab + Tab,(xB - Tab,aB - TBb,aa )
—lab
_ 15 %8 e 1 Y 124 nv 4 pv & m
- gpvg 9 +1 m (5 Tac,a : de,B + Tocc,a : T[}d,b N T(xc,a ' Tﬁb,d géCg
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m nv puv nv &C &g m
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The Ricci scalars then consequently read:
R'=R",G*
—la
X[ 1 n o u xb
(Ta,abgpﬁ + Ta,aﬁgub - T(x,aﬁgpb - Tﬁ,aagpb )g
T—la,c—lc D) (148)
T T & .8 + " .8 _— 8 woyd | 1B ax
2 2 a,ocgpc b,[}géd a,agpc B,bggd a,agpc [B,dggb g8 Kg
T " n 27t 3 1b g
- 4 ’ca,ﬁguc + TB,aguc _T(x,cguﬁ Tb,aggd _Ta,dg&_,b g g
R =R’ ,G*
nv pv uv uv
- (TaB,ab + Tab af Tab,aﬁ - TBb,aa )
—lab
T | (149)
V. %8 %0 _—laB Ak —lcd uv 34 v &g nv & m
=28 _2 T g | T (5 Tac.o " Todp T Toaca " Tpdp ~ Taca 'Tﬁb,djg&Cg
—lcd
m (v Y uv & & m
- 2 (Tac,ﬁ + TBC,CL - TaB,c )(2de,a - Tab,d ) g&cg

4.4.1 A Simple Example: The Dirac Particle at Rest

We introduce a transformer matrix of the following type:
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TRV n v
T = KKy

E[f,lt]] o 0 0
0 E[f[t] 0 0
K" =
“ 0 0 R[] 0
0 0 0 E[f,[t]]

Then we assume a metric of constants with:

o Ln O 0

gy g1 O 0
0 0 g, O

0 0 0 g

gaﬁ =

and fix the wrapping functions F; to:

£, []]=1[t); R[6[d]=£0; B[f[d]=1 E[fld]=1.

Assuming a weak gravity condition:

Gravity

5GP =G -5, + Gy =, B 5
F

we can fulfill the field equations with just the setting R"=0, which is to say:
0=R"=R",G*

B Y iy kv Y
(Ttxﬁ,ab + Tab 0B Tab,aB TBb,aa)

—lab
_ %3 xS _—lap Ak ~led 1 pv EC uv EC uv &C m
=8.8 T w8 | TT (_ Tac.o Todp T Taca " Tpab ~ Taca " Tpoa |8ec8

2 2

—lcd
om (Tuv
2

v uv & & m
ach T Tpe.a ~ Tape )(thd,a ~Tabd ) g: 8

20, (R[5, (R 1)

((gm )2 _gOOgll)fO [t]3 f, [t]

(150)

(151)

(152)

(153)

(154)

Most interestingly, the solution can be obtained via a simple Dirac particle at rest approach with:

f,[t]=f [t]=C,, -e"".

(155)

Remembering that the Dirac theory [12] is based on a gravity free scalar equation, we might come to
the conclusion that the metric equivalent of this theory could just be found via our approach here.

5 Conclusions

It was shown in the paper how the need for linearity of the quantum gravity field equations with
respect to the volume scaling of the metric tensor provides us with a path to metrically obtain Dirac

and Dirac-like field equations.
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7 Appendix

From Wikipedia, the free encyclopedia (https://en.wikipedia.org/wiki/Hamilton's_principle):

In physics, Hamilton's principle is William Rowan Hamilton's formulation of the principle of
stationary action. It states that the dynamics of a physical system are determined by a variational
problem for a functional based on a single function, the Lagrangian, which may contain all physical
information concerning the system and the forces acting on it. The variational problem is
equivalent to and allows for the derivation of the differential equations of motion of the physical
system. Although formulated originally for classical mechanics, Hamilton's principle also applies
to classical fields such as the electromagnetic and gravitational fields, and plays an important role
in quantum mechanics, quantum field theory and criticality theories.

So, the definition of the Hamilton principle is based on its “formulation of the principle of stationary
action”. In simpler words, the variation of such an action should be zero or, mathematically formulated,
should be put as follows:

8W=0=5jdnx-\/§-L. (156)
A%
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Here L stands for the Lagrangian, W the action, and g gives the determinant of the metric tensor, which
describes the system in question within an arbitrary Riemann space-time with the coordinates x.
Thereby, we used the Hilbert formulation of the Hamilton principle [1] in a slightly more general form.
We were able to show in [2] that the original Hilbert variation does not only produce the Einstein field
equations [3] but also contains the Quantum Theory [2, 4, 5]. It should be noted that, while the original
Hilbert paper [1] started with the Ricci scalar R as the integral kernel, which is to say L=R, we here used
a general Langrangian, because—as we will show later in this appendix—this generality—in principle—
is already contained inside the original Hilbert formulation. Even, as strange as it may sound at this
point, general kernels with functions of the Ricci scalar f(R) [6] are already included (see [14]) in the
Hilbert approach.

But what if we lived in a universe where the only thing that was certain was uncertainty?

One of the authors from [7], Dr. David Martin, always used the analogy of a moving fulcrum to
demonstrate his uneasiness with the formulation (156) [13].

In [7] we were able to show that the Hamilton principle itself hinders us to localize any system or object
at a certain position. We also see that this contradicts the concept of particles. Everything seems to be
permanently on the move or—rather—ever-jittering.

But if this ever-jittering fulcrum was one of the fundamental properties of our universe, should we
then not take this into account when formulating the laws of this very universe? Shouldn’t we better
write (156) as follows:

SW —>0=5[d"x-\/~gL? (157)
\'

And while we are at it, should we not start to investigate an even more general principle like:

SW o f(W,X,g,5)=8[d"x-/~g L? (158)
\%

The interesting aspect about this is that this investigation was already—partially—done by
(surprise, surprise) e.g., Hilbert and Einstein. But instead of introducing and explaining it in this
way, they have “hidden” their generalization inside other concepts like the introduction of a
cosmological constant or— oh yes—the postulation of matter and its introduction via an ominous
and purely postulated parameter Lv, which is to say, a Lagrange matter term. Thereby, as we
should explicitly point out here, the “hiding” never was intentionally, but just caused by the
knowledge and understanding at the time.

7.1 The Classical Hamilton Extremal Principle and How to Obtain Einstein’s
General Theory of Relativity with Matter (!) and Quantum Theory... Also with
Matter (!)

The famous German mathematician David Hilbert [1], even though applying his technique only to
derive the Einstein field equations for the General Theory of Relativity [3] in four dimensions,—in
principle—extended the classical Hamilton principle to an arbitrary Riemann space-time with a very
general variation by not only—as Hamilton and others had done—concentrating on the evolution of
the given problem or system in time, but with respect to all its dimensions. His formulation of the
Hamilton extremal principle looked as follows:

8W=0=5jd“x(\/§-(R—zA+LM)). (159)

There we have the Ricci scalar of curvature R, the cosmological constant A, the Lagrange density of
matter Ly, and the determinant g of the metric tensor of the Riemann space-time gqg. For historical
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reasons, it should be mentioned that Hilbert’s original work [1] did not contain the cosmological
constant because it was added later by Einstein in order to obtain a static universe, but this is not of
any importance here. The evaluation of the so-called Einstein-Hilbert action (159) brought indeed the
Einstein General Theory of Relativity [3], but it did not produce the other great theory physicists have
found, which is the Quantum Theory. It was not before the author of this article here, about one
hundred years after the publication of Hilbert’s paper [1], extended Hilbert’s approach by considering
scaling factors to the metric tensor and showed that Quantum Theory already resides inside the
sufficiently general General Theory of Relativity [2, 4, 7, 8, 9, 10]. We will not discuss the reason why
this simple idea has not been tried out by other scientists before, but we may still express our
amazement about the fact that a simple extension of the type:

Gy = g, - FIf] (160)

solves one of the greatest problems in science?, namely the unification of physics and that it took
science more than 100 years to come up with the idea. Using the symbol G for the determinant of the
scaled metric tensor Gqg from (1) of the Riemann space-time, we can rewrite the Einstein-Hilbert action
from (159) as follows:

SW=0=6jd“x(JI-Fq-(R*—2A+LM)) (161)

where we even used another generalization, namely the kernel extension F9, which could also be
possible and still converges to the classical form for F=2 1. Here, which is to say in this paper, we will
only consider examples with g=0, but for completeness and later investigation we shall mention that
a comprehensive consideration of variational integrals for the cases of general g are to be found in [4].
Performing the variation in (161) with respect to the metric G, and remembering that the Ricci
curvature of such a metric (e.g., [7], appendix D) changes the whole variation to:

SW =0=38[d"x(V-G -F*-(R"~2A+Ly))
v

=2AF-2F g%
%_ 2]1:72 (n - 1) 2gab]‘:,ab + F,dnggabgab,c ? (162)
= 8]‘ an \ _G * Fq * _nEdnggabgac,b - 2A + LM
A%
abF 'F
~(-DE (-6

results in:

2 This does not mean, of course, that we should not also look out for generalizations of the scaled metric and
investigate those as we did in [10].
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when setting q=0 and assuming a vanishing cosmological constant. With a cosmological constant we
have to write:

5GP
« . 1
0=(R of —%R -Gaﬁj F-Sg“B +g* 8(%))

gaB
ch[} —RT + A'guﬁ

Fop (n=2)+ F,abgaﬁgab + F,agab (ng,a ~Zpub ) -

1 1
- gcxc,[i __ngac,ﬁ __ngﬁc,ot

a al c 2 2
2F F.g bng,a _F,Bg bgab,a +F,g ¢

) ! w || [5G
+Enga5,c +Egaﬁgab,cg
! cd
+p7 (Fu By Bn-6)+ g, FFg™ (4-n))
2AF -2F ng . .
+(n—1) L o +%(n—6) @
2F| - - F,dnggabgac,b 4F2 2
(n-1) . (164)

For better recognition of the classical terms, we have reordered a bit and boxed the classical vacuum
part of the Einstein field equations (double lines) and the cosmological constant term (single line).
Everything else can be—no, represents (!)—matter or quantum effects or both.
Thus, we also—quite boldly—have set the matter density Lv equal to zero, because we see that already
our simple metric scaling brings in quite some options for the construction of matter. It will be shown
elsewhere [10] that there is much more which is based on the same technique.
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7.2 The Principle of the Ever-littering Fulcrum and the Alternate Hamilton
Principle

We might bring forward two reasons why we could doubt the fundamentality of the Hamilton principle
even in its most general form of the generalized Einstein-Hilbert action:

a) The principle was postulated and never fundamentally derived.

b) Even the formulation of this principle in its classical form (159) results in a variety of options
where factors, constants, kernel adaptations, etc. could be added, so that the rigid setting of
the integral to zero offers some doubt in itself. A calculation process which offers a variety of
add-ons and options should not contain such a dogma. The result should be kept open and
general. Dr. David Martin proposed this as the “tragedy of the jittering fulcrum” and we
therefore named this principle “David’s principle of the ever-jittering fulcrum” [13]. It
demands:

5, W=2=5, [d"xJ-gxR
v

: (165)
8, W=2=8; [d"x~/-G xR
\%

1.0 F

0.0

1.0 0.5 0.0 0.5 1.0

Fig. A1: David’s principle of the ever-jittering fulcrum cannot accept a dogmatic insistence on a zero
outcome of the Einstein-Hilbert action (159) or (generalized and also bringing about the Quantum
Theory) (161). Instead it should allow for all states and not just the extremal position (see the two red
dots and the corresponding tangent planes in the picture).

One of the simplest generalizations of the classical principle could be the linear one, which is illustrated
in figure Al. It could be constructed as follows:

J‘dnx,/—gx)(“ﬁ~gaﬁ =8guBW=8gqudnx —-gxR. (166)
v A\

Thereby we have used the classical form with the unscaled metric tensor, respectively without setting
the factor apart from the rest of the metric. Performing of the variation on the right-hand side and
setting

Ko = [ - 5g% (167)

or—for the reason of —maximum generality even:
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KP =HP .5y = H-5g* (168)

just gives us the same result as we would obtain it when assuming a non-zero cosmological constant,
because evaluation yields:

R
Id"x —g xH-Bg“ﬁ-gaﬁ =Jd“x -g X(RaB_EgGﬁJSgaﬁ
\% \'%

, (169)
n R af
:>0=Id XA/78 X Rqs _EgaB_Hgaﬁ og
v
respectively:
J'd HOLB S'de guﬁ J-d X+/—E X( gaBJSgGB
) " . (170)

=0= J-d"x —g ><(R0LB —%guﬁ —Hg(mjfig“‘B
A%

Simply setting H=-A (c.f. single-line boxed term in equation (164)) demonstrates this.

Nothing else is the usage of a general functional term T, being considered a function of the coordinates
of the system (perhaps even the metric tensor) in a general manner, as follows:

[dxJ=gxT=5, W=5, [d'x-gxR. (171)
\' \%

As before, performing of the variation on the right-hand side and setting
=T,-3g" (172)

gives us something which was classically postulated under the variational integral, namely the classical
energy-matter tensor. This time, however, it simply pops up as a result of David’s principle of the
jittering fulcrum and is equivalent to the introduction of the term Ly under the variational integral.
Evaluation yields:

R
J‘dnx /_g 'TocB .Sga[’» — Ian —-g ><(RO([3 _Eguﬁ)sgaﬁ
v v

\'

(173)

So, we see that in introducing a cosmological constant and in postulating a matter term, even
Einstein and Hilbert already—in principle—“experimented” with a non-extremal setting for the
Hamilton extremal principle.

Apart from linear dependencies and other functions or functional terms, we could just assume a
general outcome like:

f(W)szd“x —ngj:SgaBWZSg“BId“x —gxR- (174)
4 A%
This, however, would not give us any substantial hint where to move on, respectively, which of the

many possible paths to follow. We therefore here start our investigation with the assumption of an
eigen result for the variation as follows:

KW =X-[dx-gxR =5, W=5, [d"xJ-gxR. (175)
v \%
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This leads to:
J.d“xwl—g (RldfigKx —R.(%.gKKSgKx ~|—7(D:0. (176)
\'

As the term )( could always be expanded into an expression like:
K=H-g og%, (177)
we obtain from (176):

0=[d"xy-g (RMSg“ —R-Gﬂqj gmﬁgmj

\%
zjd“x‘/—g(Rd—R-[%JrH)ngjég“ . (178)
\'%
1
:>RK7\, _R(E—i_ngK?x :0

We realize that the term H can be a general scalar even if we would demand the term X to be a
constant.
The complete equation when assuming a scaled metric tensor of the form (1) would read:

F,a[a (n-2)+ F,abgocﬁgab
R . — L +F,agab (gﬁb,a ~ 8pab ) - F,agabgﬁb,a - F,Bgabgab,a
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+F(F,a Fy(3n=6) + £, FFug” (4-n)) =0, (179)

1 =2AF-2F g™,
R-— ab cd _ab cd _ab
2F((n—D\2¢"F,, +Fg“e" g, )-nF,g"g"e,, (1 N Hj
- ' E gtxﬁ

ab
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and in the case of metrics with constant components this equation simplifies to:

1 ab
Rop _E(F,aﬁ (n—2)+F;2,s8 )
1 C
AT (F.-Fy(3n—6)+g4F.Fg (4-n)) ~0- (180)

(n-1) g"F,-F (1 )
| R——= ab a b _ =+ H
( oF |28 F,ab+—2F (n—6) > Bap

7.2.1 The Question of Stability

From purely mechanical considerations, one might assume that extremal solutions of the variational
equation (165) correspond to more stable states than non-extremal solutions, and in fact we will find
this in connection with the 3-generations problem, which we have discussed in [12].
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