
 

 1  
 

   



 

 2  
 

CONTENTS 

1 Inhalt 
2 ABSTRACT ................................................................................................................................................ 3 

3 DEMANDING LINEARITY = PRINCIPLE OF SUPERPOSITION ....................................................................... 3 

3.1 WHY LINEARITY? ........................................................................................................................................... 3 

4 BRINGING IN TIME ................................................................................................................................... 4 

5 QUANTIZATION ........................................................................................................................................ 5 

6 THE PROBLEM OF NONLINEARITY IN QUANTUM GRAVITY THEORIES ...................................................... 5 

7 METRIC LINEARITY ................................................................................................................................... 5 

8 HAMILTON LINEARITY AND THE JITTER OF SPACE-TIME ........................................................................... 7 

9 CONCLUSIONS .......................................................................................................................................... 9 

10 REFERENCES ..................................................................................................................................... 10 

11 APPENDIX ......................................................................................................................................... 10 

11.1 THE CLASSICAL HAMILTON EXTREMAL PRINCIPLE AND HOW TO OBTAIN EINSTEIN’S GENERAL THEORY OF RELATIVITY 

WITH MATTER (!) AND QUANTUM THEORY… ALSO WITH MATTER (!) ............................................................................. 11 
11.2 PRINCIPLE OF THE EVER-JITTERING FULCRUM AND THE ALTERNATE HAMILTON PRINCIPLE ..................................... 13 

11.2.1 The Question of Stability ............................................................................................................... 16 
11.3 APPENDIX REFERENCES ............................................................................................................................ 16 

 
 

 
 
 
 
 
 

Text Copyright © 2025 Dr. Norbert Schwarzer 
Cover Picture: “Infinity” (by Norbert Schwarzer) 
Cover Copyright © 2025 Dr. Norbert Schwarzer 

All rights reserved. 
 
 

  



 

 3  
 

Infinite Orthogonal Dimensionality 
Part I:  

Why We Need Linearity and How Does This 
Make the Space-Time Jitter 

By Dr. Norbert Schwarzer 

2 Abstract 
In this short paper we will discuss the question of universal infinity and linearity.  
As a by-product, we will find “the struggle for linearity” as the source and driving force for the quantum 
jitter and vacuum fluctuations. This, however, can only be derived from a quantum gravity ansatz, 
which we are going to apply. 
As there are apparently many ways to linearize quantum gravity field equations, we will present our 
results in a series of papers about the—here—so-called “Infinite Orthogonal Dimensionality”. 

3 Demanding Linearity = Principle of Superposition 

3.1 Why Linearity? 

One of the authors of the fundamental book [1], Dr. David Martin, always insisted on the existence of 
an infinite number of options, not just in this universe, but with every system. He named this principle 
“the principle of infinite dimensionality”1. As an illustrative example Dr. Martin often uses the following 
constellation: 
“The Observer-Observed entanglement BY DEFINITION gives rise to the very definition of “incapable of 
being correlated or covariance” as the extinguished observation moment means that all uncorrelated 
options simultaneously exist including the extinction of the very observation just made.  Just like you 
cannot take a step into the same stream twice, so to one cannot make the same observation twice.  The 
erasure of “new” and the persistence of a "memory function” means that the observation dyad – once 
observed – is statically orthogonal to itself!” 
Along the way, one automatically also gets a very small problem with the so-called covariance 
principle, but this was already discussed elsewhere [1, 2]. 

 
1 In order to be fair and correct, one should mention that Dr. Martin at first referred to his principle by using the 
expression “infinite orthogonality” or “infinite orthogonal dimensionality”, but due to the fact that in the 
scientific community the technical expression “orthogonality” is mainly seen as dimensional linear independency 
and thus, with reduction to this aspect, is not of need as any linear independent set of dimensions could be 
orthonormalized by the Gram-Schmidt process, the principle was reduced to the current “infinite dimensionality” 
when just considering ideal systems. Nevertheless, orthogonality—as we will show in this paper—has its 
justification in Martin’s principle because: 

A) We can easily show mathematically that any non-orthogonality is nothing other than entanglement. 
This allows us to assume a fundamental orthogonality with entanglements instead of working with non-
orthogonalities.  

B) There is a statistical orthogonality when ALWAYS and very fundamentally conspiring the whole (see 
derivation (1) to (4)). 
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The problem some—more clever—critiques, when not resorting to ad hominem arguments right from 
the start, had with this concept was that a system (perhaps even this universe) may not have infinitely 
many attributes to actually produce the demanded infinite dimensionality. So, how can the principle 
still be fulfilled even in systems (space-times) with finite numbers of dimensions? 
Well, at least when leaving orthogonality aside for the time being, the answer is surprisingly simple: 
linearity! 
Linearity allows the superposition of solutions to a system, and even with just two solutions S1 and S2 
to a system, one might always construct a superposition like: 

 tot 1 2S a S b S= ⋅ + ⋅  (1) 

and one ends up with an infinite number of possibilities when a and b are arbitrary… not being 
orthogonal to each other, though. 
And how does the statistic orthogonality come into play? Which is to say, how is it assured that nobody 
goes twice through the same river, or what assures that every linear combination occurs only once? 
Well, in order to put it mathematically, we just have to extend (1) to its true and practical form, which 
reads: 

 tot 1 2 UniverseS a S b S c S= ⋅ + ⋅ + ⋅ . (2) 

Of course, SUniverse actually means SRest_of_the_universe, because the states S1, S2 are a part of the universe. 
Each and every practical linear combination of states S1, S2 exists in this universe, which in the moment 
the linear combination is formed, shall exist in state SUniverse_A. Resolving the linear combination and 
reforming it some point in time later would not only change the universe due to the process itself, but 
it also happens at a different state SUniverse_B even when the states S1, S2 and their formation would—
for some funny reason—not influence the rest of the world. Hence, (2)—when realized for the first 
time—would have to be written: 

 tot 1 2 Universe _ AS a S b S c S= ⋅ + ⋅ + ⋅ , (3) 

while its second realization leads to: 

 tot 1 2 Universe _ BS a S b S c S= ⋅ + ⋅ + ⋅ . (4) 

As the two situations statistically and fundamentally exclude each other, one has an orthogonality, and 
the fact that there are infinitely many such combinations leads to our “orthogonal infinity” or “infinite 
orthogonality” principle. 

4 Bringing in Time 
When substituting the Suniverse-term by time t: 

 tot 1 2S a S b S t= ⋅ + ⋅ + , (5) 

we might even conclude that in fact the principle of infinite orthogonality holds true even for systems 
without the universal rest as long as these systems have time, because we would then obtain two 
otherwise equal states as two different moments in time, which is to say: 

 tot 1 2 AS a S b S t= ⋅ + ⋅ + , (6) 

 tot 1 2 BS a S b S t= ⋅ + ⋅ + . (7) 

On the other hand, we may just take time as what it has been used here in our equations, namely a 
dimension summing up “the universal rest”: 
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 Universec S t⋅ = , (8) 

thereby making every constellation unique. 

5 Quantization 
The question which still needs to be discussed and answered in connection with our principle of the 
infinite orthogonality is the one about the character of the parameters in the state-equations (2) to 
(7). Are these parameters 100% continuous or are they somehow restricted, perhaps even quantized? 
The answer to this question can only be given via a true Quantum Gravity Theory. 
Hence, we are in need of such a theory and it is quite a lucky coincident that we also possess it (see 
appendix). 

6 The Problem of Nonlinearity in Quantum Gravity Theories 
There is one other problem, however, and this has to do with the fact that the equations arising from 
the fundamental Hamilton principle—even in its adjusted and generalized form—are apparently 
nonlinear and—consequently—would not allow for the superposition of solutions.  
But is this truly so? 
We will see that there is in fact a huge variety of options to find linear quantum field equations without 
approximations. The important aspect thereby: It apparently have to be quantum gravity equations. 
Just the classical gravity equations will not do. 
We will see this in the next section when rigidly demanding linearity just with the classical Einstein field 
equations [3, 4]. 

7 Metric Linearity 
When trying to directly construct linear differential equations from the Einstein-Hilbert action, one has 
to start with the main component of the Einstein field equations, which is the Ricci tensor and the Ricci 
scalar. The first can be given in terms of the metric tensor and its derivatives as follows: 

 

( )

( )( )

ab
,ab ab, b,a b,a

ab cd
ac, bd, c,a d,b c,a b,d

ab cd
c, c, ,c bd,a ab,d

1 g g g g g
2
1 1R g gg g g g g g
2 2
1 g g g 2g g g g
4

αβ αβ α β β α

αβ α β α β α β

α β β α αβ

 + − −− 
 

  = + ⋅ + ⋅ − ⋅   
 
 + − −− 
 

. (9) 

The latter, the Ricci scalar, then results from the first via: 

 

( )

( )( )

ab
,ab ab, b,a b,a

ab cd
ac, bd, c,a d,b c,a b,d

ab cd
c, c, ,c bd,a ab,d

1 g g g g g
2
1 1R g g g gg g g g g g
2 2
1 g g g 2g g g g
4

αβ αβ α β β α

αβ αβ
αβ α β α β α β

α β β α αβ

 + − −− 
 

  = + ⋅ + ⋅ − ⋅   
 
 + − −− 
 

. (10) 

The demand of linearity leads to:  
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( )( )

ac, bd, c,a d,b c,a b,d
ab cd

c, c, ,c bd,a ab,d

1 g g g g g g
2 g g 0

1 g g g 2g g
2

α β α β α β

α β β α αβ

 ⋅ + ⋅ − ⋅ 
= 

 + − −− 
 

, (11) 

respectively, (significantly less restrictive): 

 
( )( )

ac, bd, c,a d,b c,a b,d
ab cd

c, c, ,c bd,a ab,d

1 g g g g g g
2 g g g 0

1 g g g 2g g
2

α β α β α β
αβ

α β β α αβ

 ⋅ + ⋅ − ⋅ 
= 

 + − −− 
 

. (12) 

Using the adapted Einstein field equations following from the non-extremal Hamilton principle (see 
appendix of this paper): 

 n n

V V

W 0 d x g L W ? d x g Lδ = = δ ⋅ − ⋅ ⇒ δ = = δ ⋅ − ⋅∫ ∫ , (13) 

we result in: 

 

n

V

n

V

10 d x g R g R g g
2

1d x g R R g g
2

1R R g 0
2

+ H

+ H

+ H

κλ κλ
κλ κλ

κλ
κλ κλ

κλ κλ

  = − δ − ⋅ δ    

  = − − ⋅ δ    

 ⇒ − ⋅ = 
 

∫

∫ , (14) 

 and demand the following: 

 

( )

( )( )

µ µ

ab
µ ,ab ab,µ µb,a b,aµ

ab cd
ac,µ bd, µc,a d,b µc,a b,d

ab cd
µc, c,µ µ ,c bd,a ab,d

,ab ab, b,a

µ

1R R g 0
2

1 g g g g g
2
1 1 g gg g g g g g
2 2
1 g g g 2g g g g
4

1 g g g
2

1 g
2

+ H

+ H

ν ν

ν ν ν ν

ν ν ν

ν ν ν

αβ αβ α β

ν

 − ⋅ = 
 
⇒

 + − −− 
 

  + ⋅ + ⋅ − ⋅   
 
 + − −− 
 

+ −−

 − 
 

( )

( )( )

ab
b,a

ab cd
ac, bd, c,a d,b c,a b,d

ab cd
c, c, ,c bd,a ab,d

0
g g

1 1 g g gg g g g g g
2 2
1 g g g 2g g g g
4

β α

αβ
α β α β α β

α β β α αβ

 
 
 
 
 
 
 
 

= 
  −  
  

   + ⋅ + ⋅ − ⋅    
  
  + − −−    

. (15) 

There, we find the linearity condition to be: 
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( )( )

( )( )

ab cd
ac,µ bd, µc,a d,b µc,a b,d

ab cd
µc, c,µ µ ,c bd,a ab,d

ab cd
ac, bd, c,a d,b c,a b,d

µ
a

c, c, ,c bd,a ab,d

1 1 g gg g g g g g
2 2

1 g g g 2g g g g
4

1 1 g gg g g g g g1 2 2g
2 1 g g g 2g g g

4

+ H

ν ν ν

ν ν ν

α β α β α β

ν

α β β α αβ

  ⋅ + ⋅ − ⋅    
 + − −− 
 

 ⋅ + ⋅ − ⋅    − 
 

+ − −− b cd

0

g
g

αβ

 
 
 
 
 
  =
  
  
  
  

    

. (16) 

Whatever metric components are being fixed this way, the remaining terms read: 

 

( )

( )

µ µ

ab
µ ,ab ab,µ µb,a b,aµ

ab
,ab ab, b,a b,aµ

1R R g 0
2

1 g g g g g
2 0

1 1 g g g gg g g
2 2

+ H

+ H

ν ν

ν ν ν ν

αβ
αβ αβ α β β αν

 − ⋅ = 
 
⇒

  + − −−     =
    + − −− −        

. (17) 

This, however, are no linear differential equations and thus, their solutions are non-additive. We see 
that we are back with the condition (11), giving us a Ricci-curvature-free space-time due to: 

 ( ) ab
,ab ab, b,a b,ag g g g0 gαβ αβ α β β α+ − −=  (18) 

and the linear field equation: 

 ,ab ab, b,a b,ag g g g 0αβ αβ α β β α+ − − = . (19) 

One may conclude at this point that the cosmological observation of space being apparently flat on 
bigger scales is just a result of the superposition principle, because without linearity such 
superposition, meaning the coexistence of solutions and subsequent “infinite dimensionality”, 
would not be possible. 

8 Hamilton Linearity and the Jitter of Space-Time 
Another way to enforce linearity and subsequent super-positivity would be the adjustment of the 
Hamilton principle (also see the appendix of this paper). Thereby we do not demand the variation of 
the action to give any particular result, like zero as in the classical case (13), but always try to assure 
linearity for the field equations… or at least parts of these, as we will consider in the next parts of this 
series of publications.  
Let us denote the nonlinear parts of the Ricci tensor and the Ricci scalar as follows: 

 
( )( )

ac, bd, c,a d,b c,a b,d
ab cd

c, c, ,c bd,a ab,d

1 g g g g g g
2NL g g

1 g g g 2g g
2

α β α β α β

αβ

α β β α αβ

 ⋅ + ⋅ − ⋅ 
=  
 + − −− 
 

, (20) 
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( )( )

ac, bd, c,a d,b c,a b,d
ab cd

c, c, ,c bd,a ab,d

1 g g g g g g
2NL NL g g g g

1 g g g 2g g
2

α β α β α β
αβ αβ

αβ

α β β α αβ

 ⋅ + ⋅ − ⋅ 
= =  

 + − −− 
 

, (21) 

then a linearity-demanding Hamilton principle could be satisfied via: 

 
( )

n

V

n n

V V

n n

V V

n µ n
µ

V V

n

R? d x g R g g
2

Rd x g T d x g R g g
2

Rd x g g ? d x g R g g
2

g Rd x g g NL NL g d x g R g g
2 2

R0 d x g R g NL N
2

αβ
αβ αβ

αβ
αβ αβ

αβ αβ
αβ αβ αβ

αβαβ ν αβ
αβ ν αβ αβ

αβ αβ αβ

 − × − δ 
 

⇒

 − × − × − δ 
 

 − ×δ ⋅ − × − δ 
 

   − ×δ ⋅ − ⋅ − × − δ   
   

⇒ − × − − −

∫

∫ ∫

∫ ∫

∫ ∫











µ
µ

V

g
L g g

2
αβν αβ

ν

  
⋅ δ  

  ∫

. (22) 

In the classical theory the additional term µ
µ

g
NL NL g

2
αβν

αβ ν

 
− ⋅ 

 
 under the integral in the last line of 

(22) would simply be interpreted as matter, but as we have already seen in our previous publications 
[5, 6, 7, 8], we might just transform even this matter away. Following the procedure in [8], we assume 
that there exists another metric γαβ, which allows us to rewrite the last line in (22) as follows: 

 

µ
µ

n
* *2

gRg R g NL NL g g
2 2

g
F R R

2 F

αβν αβ
αβ αβ αβ ν

αβ
αβ

αβ

  
− × − − − ⋅ δ  

  
   γ

= −γ ⋅ ⋅ − δ   
   

. (23) 

The term for the scale adapted Ricci scalar was already given above and now—as being for the metric 
tensor γαβ—reads: 

 ( ) ( ) ( )

cd
,d ,c2 F 2F

ab
ab cd ab ,a ,b*

,ab ,d ab,c2 3
cd ab

,d ac,b

F FR 1 2 F Fn 1R n 6n 1F 2F 4F
nF

γ= ∆ − γ  
  γ ⋅ γ + γ γ γ−= − − −−  
 − γ γ γ 



. (24) 

Now, when incorporating (23) into (22), we obtain: 
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µ
µ

n
* *2

n µ
µ

V

n
n * * n n * *2

V

gRg R g NL NL g g
2 2

g
F R R

2 F

gR0 d x g R g NL NL g g
2 2

g g
d x F R R d x F R R

2 F 2

αβν αβ
αβ αβ αβ ν

αβ
αβ

αβ

αβν αβ
αβ αβ αβ ν

αβ
αβ αβ

αβ αβ

  
− × − − − ⋅ δ  

  
   γ

= −γ ⋅ ⋅ − δ   
   

⇒

  
− × − − − ⋅ δ  

  

   γ
= −γ ⋅ ⋅ − δ = −γ ⋅ ⋅ −   

    

∫

∫



V

n * * n *
G

V V

G

g
d x G R R G d x G R

2 αβ

αβ

αβ αβ
αβ


δ 


 
= − ⋅ − δ = δ − ⋅ 

 

∫

∫ ∫

. (25) 

This variation, however, just gives us the classically known result from [4] for the vacuum case, namely: 

 ( )
*

n * n *
G G

V V

RW d x G R d x G R G
2αβ αβ αβ αβ

  
δ = δ − ⋅ = − ⋅ −     

∫ ∫ . (26) 

In other words: A universe, keen on placing its existence on David’s principle of infinite 
dimensionality and subsequent additivity, would always insist on substituting a set of field equations 
of the type (26) by its linear variational equivalent (22), which is to say: 

 n µ
µ

V

gR0 d x g R g NL NL g g
2 2

αβν αβ
αβ αβ αβ ν

  
− × − − − ⋅ δ  

  ∫ . (27) 

Such a universe, however, can have no true vacuum. The term assuring its linearity and thus, David’s 
principle, namely: 

 µ
µ

g
T NL NL g

2
αβν

αβ αβ ν= − ⋅ , (28) 

would always provide a permanent vacuum fluctuation… being—apparently—but the eternal 
struggle for the satisfaction of the linearity condition or—as we named it here—David’s principle. 
The observer would realize this linearization as virtual matter and energy field. 
Most interestingly, all modern Quantum Theories demand the existence of vacuum fluctuations and 
experimental observations like the Casimir effect prove their presence. Here we have now derived 
their fundamental metric origin. Apparently, it is not the zero in Hamilton’s postulation which is 
fundamental, but the “infinite dimensionality” and linearity condition, hence, David’s principle. 

9 Conclusions 
“The Observer-Observed entanglement BY DEFINITION gives rise to the very definition of “incapable of 
being correlated or covariance” as the extinguished observation moment means that all uncorrelated 
options simultaneously exist including the extinction of the very observation just made.  Just like you 
cannot take a step into the same stream twice, so to one cannot make the same observation twice.  The 
erasure of “new” and the persistence of a "memory function” means that the observation dyad – once 
observed – is statically orthogonal to itself!” (Dr. David Martin) 
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11 Appendix  
From Wikipedia, the free encyclopedia (https://en.wikipedia.org/wiki/Hamilton's_principle): 

In physics, Hamilton's principle is William Rowan Hamilton's formulation of the principle of 
stationary action. It states that the dynamics of a physical system are determined by a variational 
problem for a functional based on a single function, the Lagrangian, which may contain all physical 
information concerning the system and the forces acting on it. The variational problem is 
equivalent to and allows for the derivation of the differential equations of motion of the physical 
system. Although formulated originally for classical mechanics, Hamilton's principle also applies 
to classical fields such as the electromagnetic and gravitational fields, and plays an important role 
in quantum mechanics, quantum field theory and criticality theories. 

So, the definition of the Hamilton principle is based on its “formulation of the principle of stationary 
action”. In simpler words, the variation of such an action should be zero or, mathematically formulated, 
should be put as follows:  

 n

V

W 0 d x g Lδ = = δ ⋅ − ⋅∫ . (29) 

Here L stands for the Lagrangian, W the action, and g gives the determinant of the metric tensor, which 
describes the system in question within an arbitrary Riemann space-time with the coordinates x. 
Thereby, we used the Hilbert formulation of the Hamilton principle [1] in a slightly more general form. 
We were able to show in [2] that the original Hilbert variation does not only produce the Einstein field 
equations [3] but also contains the Quantum Theory [2, 4, 5]. It should be noted that, while the original 
Hilbert paper [1] started with the Ricci scalar R as the integral kernel, which is to say L=R, we here used 
a general Langrangian, because—as we will show later in this appendix—this generality—in principle—
is already contained inside the original Hilbert formulation. Even, as strange as it may sound at this 
point, general kernels with functions of the Ricci scalar f(R) [6] are already included (see [14]) in the 
Hilbert approach. 
But what if we lived in a universe where the only thing that was certain was uncertainty? 

https://en.wikipedia.org/wiki/Annalen_der_Physik
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One of the authors of [7], Dr. David Martin, always used the analogy of a moving fulcrum to 
demonstrate his uneasiness with the formulation (13) [13].  
In [7] we were able to show that the Hamilton principle itself hinders us to localize any system or object 
at a certain position. We also see that this contradicts the concept of particles. Everything seems to be 
permanently on the move or—rather—ever-jittering. 
But if this ever-jittering fulcrum was one of the fundamental properties of our universe, should we 
then not take this into account when formulating the laws of this very universe? Shouldn’t we better 
write (13) as follows: 

 n

V

W 0 d x g Lδ → ≅ δ ⋅ − ⋅∫ ? (30) 

And while we are at it, should we not start to investigate an even more general principle like: 

 ( ) n

V

W f W, x,g d x g Lαβδ → = δ ⋅ − ⋅∫ ? (31) 

The interesting aspect about this is that this investigation was already—partially—done by 
(surprise, surprise) e.g., Hilbert and Einstein. But instead of explaining it in this way, they have 

“hidden” their generalization inside other concepts like the introduction of a cosmological constant 
or—oh yes—the postulation of matter and its introduction via an ominous and purely postulated 

parameter LM, which is to say, a Lagrange matter term. 

11.1 The Classical Hamilton Extremal Principle and How to Obtain Einstein’s 
General Theory of Relativity with Matter (!) and Quantum Theory… Also with 
Matter (!) 

The famous German mathematician David Hilbert [1], even though applying his technique only to 
derive the Einstein field equations for the General Theory of Relativity [3] in four dimensions,—in 
principle—extended the classical Hamilton principle to an arbitrary Riemann space-time with a very 
general variation by not only—as Hamilton and others had done—concentrating on the evolution of 
the given problem or system in time, but with respect to all its dimensions. His formulation of the 
Hamilton extremal principle looked as follows: 

 ( )( )n
M

V

W 0 d x g R 2 Lδ = = δ − ⋅ − Λ +∫ . (32) 

There we have the Ricci scalar of curvature R, the cosmological constant Λ, the Lagrange density of 
matter LM, and the determinant g of the metric tensor of the Riemann space-time gαβ. For historical 
reasons, it should be mentioned that Hilbert’s original work [1] did not contain the cosmological 
constant because it was added later by Einstein in order to obtain a static universe, but this is not of 
any importance here. The evaluation of the so-called Einstein-Hilbert action (32) brought indeed the 
Einstein General Theory of Relativity [3], but it did not produce the other great theory physicists have 
found, which is the Quantum Theory. It was not before the author of this article here, about one 
hundred years after the publication of Hilbert’s paper [1], extended Hilbert’s approach by considering 
scaling factors to the metric tensor and showed that Quantum Theory already resides inside the 
sufficiently general General Theory of Relativity [2, 4, 7, 8, 9, 10]. We will not discuss the reason why 
this simple idea has not been tried out by other scientists before, but we may still express our 
amazement about the fact that a simple extension of the type: 

 [ ]G g F fαβ αβ= ⋅  (33) 
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solves one of the greatest problems in science2, namely the unification of physics and that it took 
science more than 100 years to come up with the idea. Using the symbol G for the determinant of the 
scaled metric tensor Gαβ from (33) of the Riemann space-time, we can rewrite the Einstein-Hilbert 
action from (32) as follows: 

 ( )( )n *
M

V

W 0 d x G R 2 Lδ = = δ − ⋅ − Λ +∫ . (34) 

Just as a side-note, we want to point out that also variational structures as: 

 ( )( )n q *
M

V

W 0 d x G F R 2 Lδ = = δ − ⋅ ⋅ − Λ +∫  (35) 

could be possible and still converge to the classical form for F1. Here, which is to say in this paper, 
we will only consider examples with q=0, but for completeness and later investigation we shall mention 
that a comprehensive consideration of variational integrals for the cases of general q are to be found 
in [4]. 
Performing the variation in (34) with respect to the metric Gαβ and remembering that the Ricci 
curvature of such a metric (e.g., [7] appendix D) changes the whole variation to: 

 

( )( )

( )

( ) ( )

cd
,d ,c

n q *
M

V

2 F 2F g

ab cd ab
,ab ,d ab,c2

n q cd ab
M,d ac,b

ab
,a ,b

3

W 0 d x G F R 2 L

R 1 2g F F g g gn 1
F 2F

d x G F 2 LnF g g g

g F F
n 6n 1 4F

= ∆ −

δ = = δ − ⋅ ⋅ − Λ +

          + −−    
    = δ − ⋅ ⋅ − Λ +−    
   ⋅   − −−      

∫



V





∫
, (36) 

results in: 

 

( ) ( )

G

* *

ab ab
b, ,b, ,ab ,a

c, c, c,
ab ab cd

, b,a , b,a ,d
ab

,c ab,c

11 10 g gR R G
F2 F

g gF F g g F gn 2
1 11 g ng ngR 2 22F F g g F g g F g

1 1ng g g g
2 2

αβδ

αβ αβ
αβ αβ

β α βααβ αβ

α β α β β α
αβ

α β β α

αβ αβ

    = ⋅δ + ⋅δ− ⋅        

 −+ + −−

  − − −

− +  
 + + 
 

=



( ) ( )( )

( )

( )

( )
( )

cd
,d ,c

cd
, , ,c ,d2

2 F 2F g

ab cd ab ab
,ab ,d ab,c ,a ,b

2
cd ab

,d ac,b

1 F F g F F g3n 6 4 n4F

g2g F F g g g g F F Rn 1 n 62F 4F 2n 1n F g g g
n 1

α β αβ

= ∆ −

αβ

 
 
 
  
  
     
 + ⋅ +− − 
 
   
   + ⋅−   + + − ⋅−   −  −  −  



Gαβ


 
 
 
 
 
 
 

δ 
 
 
 
 
 
 
  



, (37) 

 
2 This does not mean, of course, that we should not also look out for generalizations of the scaled metric and 
investigate those as we did in [10]. 
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when setting q=0 and assuming a vanishing cosmological constant. With a cosmological constant we 
have to write: 

 

( ) ( )

G

* *

ab ab
b, ,b, ,ab ,a

c, c, c,
ab ab cd

, b,a , b,a ,d
ab

,c ab,c

11 10 g gR R G
F2 F

g
R R g

2

g gF F g g F gn 2
1 11 g ng ng
2 22F F g g F g g F g

1 1ng g g g
2 2

αβδ

αβ αβ
αβ αβ

αβ
αβ αβ

β α βααβ αβ

α β α β β α

α β β α

αβ αβ

    = ⋅δ + ⋅δ− ⋅        

− + Λ ⋅

−+ + −−

 − −−
− + 

= + +




( ) ( )( )

( )

( )

( )

cd
, , ,c ,d2

cd
ab,d ,c

,a ,b
2cd ab

,d ac,b

G

1 F F g F F g3n 6 4 n4F
2 F 2F g

gg F Fn 1 n 6n2F 4F 2F g g g
n 1

αβ

α β αβ

αβ

 
 
 
 

  
  
  

  
  

   δ     
 
 + ⋅ +− − 
   ∆ − ⋅  − + + ⋅−   −   −    . (38) 

For better recognition of the classical terms, we have reordered a bit and boxed the classical vacuum 
part of the Einstein field equations (double lines) and the cosmological constant term (single line). 
Everything else can be—no, represents (!)—matter or quantum effects or both. 
Thus, we also—quite boldly—have set the matter density LM equal to zero, because we see that already 
our simple metric scaling brings in quite some options for the construction of matter. It will be shown 
elsewhere [10] that there is much more which is based on the same technique. 

11.2 Principle of the Ever-Jittering Fulcrum and the Alternate Hamilton Principle 

We might bring forward two reasons why we could doubt the fundamentality of the Hamilton principle 
even in its most general form of the generalized Einstein-Hilbert action: 

a) The principle was postulated and never fundamentally derived. 
b) Even the formulation of this principle in its classical form (32) results in a variety of options 

where factors, constants, kernel adaptations, etc. could be added, so that the rigid setting of 
the integral to zero offers some doubt in itself. A calculation process which offers a variety of 
add-ons and options should not contain such a dogma. The result should be kept open and 
general. Dr. David Martin proposed this as the “tragedy of the jittering fulcrum” and we 
therefore named this principle “David’s principle of the ever-jittering fulcrum”. It demands: 

 

n
g g

V

n *
G G

V

W ? d x g R

W ? d x G R

αβ αβ

αβ αβ

δ δ − ×

δ δ − ×

∫

∫

 

 

. (39) 
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Fig. A1: David’s principle of the ever-jittering fulcrum cannot accept a dogmatic insistence on a zero 

outcome of the Einstein-Hilbert action (32) or (generalized and also bringing about the Quantum 
Theory) (34). Instead it should allow for all states and not just the extremal position (see the two red 

dots and the corresponding tangent planes in the picture). 
 
One of the simplest generalizations of the classical principle could be the linear one, which is illustrated 
in figure A1. It could be constructed as follows: 

 n n
g g

V V

d x g g W d x g Rh
αβ αβ

αβ
αβ− × ⋅ = δ = δ − ×∫ ∫ . (40) 

Thereby we have used the classical form with the unscaled metric tensor, respectively without setting 
the factor apart from the rest of the metric. Performing of the variation on the right-hand side and 
setting 

 gh Hαβ αβ= ⋅δ  (41) 

or—for the reason of—maximum generality even: 

 ab
ab gh H Hαβ αβ αβ= ⋅δγ = ⋅δ  (42) 

just gives us the same result as we would obtain it when assuming a non-zero cosmological constant, 
because evaluation yields: 

 
n n

V V

n

V

Rd x g g g d x g R g g
2

R0 d x g R g g g
2

H

H

αβ αβ
αβ αβ αβ

αβ
αβ αβ αβ

 − × ⋅δ ⋅ = − × − δ 
 

 ⇒ = − × − − δ 
 

∫ ∫

∫
, (43) 

respectively: 

 
n ab n

ab
V V

n

V

Rd x g g d x g R g g
2

R0 d x g R g g g
2

H

H

αβ αβ
αβ αβ αβ

αβ
αβ αβ αβ

 − × ⋅δγ ⋅ = − × − δ 
 

 ⇒ = − × − − δ 
 

∫ ∫

∫
. (44) 

 
Simply setting H=-Λ (c.f. single-line boxed term in equation (38)) demonstrates this. 
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Nothing else is the usage of a general functional term T, being considered a function of the coordinates 
of the system (perhaps even the metric tensor) in a general manner, as follows: 

 n n
g g

V V

d x g T W d x g R
αβ αβ

− × = δ = δ − ×∫ ∫ . (45) 

As before, performing of the variation on the right-hand side and setting 

 T T gαβ
αβ= ⋅δ  (46) 

gives us something which was classically postulated under the variational integral, namely the classical 
energy-matter tensor. This time, however, it simply pops up as a result of David’s principle of the 
jittering fulcrum and is equivalent to the introduction of the term LM under the variational integral. 
Evaluation yields: 

 
n n

V V

n

V

Rd x g T g d x g R g g
2

R0 d x g R g T g
2

αβ αβ
αβ αβ αβ

αβ
αβ αβ αβ

 − ⋅ ⋅δ = − × − δ 
 

 ⇒ = − × − − δ 
 

∫ ∫

∫
. (47) 

So, we see that in introducing a cosmological constant and in postulating a matter term, even 
Einstein and Hilbert already—in principle—“experimented” with a non-extremal setting for the 
Hamilton extremal principle. 
Apart from linear dependencies and other functions or functional terms, we could just assume a 
general outcome like: 

 ( ) n n
g g

V V

f W f d x g R W d x g R
αβ αβ

 = − × = δ = δ − × 
 
∫ ∫ . (48) 

This, however, would not give us any substantial hint where to move on, respectively, which of the 
many possible paths to follow. We therefore here start our investigation with the assumption of an 
eigen result for the variation as follows: 

 n n
g g

V V

W d x g R W d x g Rh h
αβ αβ

⋅ = ⋅ − × = δ = δ − ×∫ ∫ . (49) 

This leads to: 

 n

V

1d x g R g R g g 0
2

+ hκλ κλ
κλ κλ

  − δ − ⋅ ⋅ δ =    ∫ . (50) 

As the term h  could always be expanded into an expression like: 

 g gh = H κλ
κλ⋅ δ , (51) 

we obtain from (50): 

 

n

V

n

V

10 d x g R g R g g
2

1d x g R R g g
2

1R R g 0
2

+ H

+ H

+ H

κλ κλ
κλ κλ

κλ
κλ κλ

κλ κλ

  = − δ − ⋅ δ    

  = − − ⋅ δ    

 ⇒ − ⋅ = 
 

∫

∫ . (52) 
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We realize that the term H can be a general scalar even if we would demand the term h  to be a 
constant. 
The complete equation when assuming a scaled metric tensor of the form (33) would read: 

 

( )

( )

( ) ( )( )

ab
, ,ab

ab ab ab
b, ,b,a , b,a , b,a

cd ab
,d c, c, c, ,c ab,c

cd
, , ,c ,d2

F F g gn 2
1 g gF g F g g F g gR

2F 1 1 1 1F g g ng ng ng g g g
2 2 2 2

1 F F g F F g3n 6 4 n4F

1R
2F n

αβ αβ

β α βα α β β α
αβ

α β α β β α αβ αβ

α β αβ

  +−
  

− + − − −  
   + − − + +      

 + ⋅ +− − 
 

−
−−

( )

( ) ( )

cd
,d ,c2 F 2F g

ab cd ab cd ab
,ab ,d ab,c ,d ac,b

ab
,a ,b

2

0

2g F F g g g nF g g g 11 g
2g F F

n 6n 1 4F

+ H

= ∆ −

αβ

 
 
 
 
 
 
 
  = 
 

    
     + −       ⋅    ⋅  − −−    



, (53) 

and in the case of metrics with constant components this equation simplifies to: 

 

( )( )

( ) ( )( )
( )

( )

ab
, ,ab

cd
, , ,c ,d2

ab
,a ,bab

,ab

1R F F g gn 22F
1 F F g F F g3n 6 4 n 04F

1g F Fn 1R g2g F n 62F 22F
+ H

αβ αβ αβ

α β αβ

αβ

  − +−  
  
  + ⋅ +− −  =  
 

   ⋅  −− − ⋅ + −      

. (54) 

11.2.1 The Question of Stability 
From purely mechanical considerations, one might assume that extremal solutions of the variational 
equation (39) correspond to more stable states than non-extremal solutions, and in fact we will find 
this in connection with the 3-generations problem, which we have discussed in [12]. 
The interested reader finds further discussion in our publication [11]. 
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