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Abstract 
A theoretical feasibility study will tackle the question whether or whether not it is possible to obtain 

hardness values higher than 100 GPa (so called "ultra hardness") for nano-composite TiN/a-Si3N4 and 

nano-composite TiN/a-Si3N4/TiSi2 coating materials. For this an effective indenter concept is used 

which also takes into account the pressure induced increase of the Young's modulus and yield 

strength during indentation.  

Introduction 
It was shown in [1] that on the basis of an effective potential function like the Morse potential given 

as 
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a contact problem can be evaluated using the mechanical parameters derived from such a potential. 

Here p, ε, σ are material parameters and r0 usually denotes the equilibrium bond length. In such a 

case the potential would define the pair interaction. Here however, as in [1], we will apply the 

potential as an effective one with r0 denoting the lattice constant (see also [2]). With respect to 

molecular dynamic simulation such an effective potential could be the basis for the extraction of the 

necessary pair and higher order interactions as demonstrated in [2]. For our feasibility study 

however, we will not need this, because we are only interested in the mechanical constants, 

especially the Young's modulus, as a function of the hydrostatic pressure P. Having this one can apply 

the method described in [1] to simulate a mechanical contact problem taking the pressure 

dependency of the Young's modulus into account. 

Theory 
As shown in [1] the pressure P and bulk modulus B can be derived from an effective potential. 

Thereby it is convenient to express P and B in units of B0 (B at P=0) and by substituting the lattice 

distance r by r=c*r0 result in the relations: 
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We also take as estimates for the critical r leading to decomposition (c.f. [1]) the following 

expressions which have to be solved numerically (r00 = p*r0): 
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to extract the critical c-value cm for maximum P(c). 

 

As a purely mathematically based measure for the critical bond length or in our case of an effective 

potential the lattice distance, the inflexion point for cifp>cm could be used. This can be numerically 

obtained for the Morse potential via: 
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Results 

An approximate discussion with first order results for the governing 

nonlinear PDE 

In favor of an as high as possible hardness we extract the smallest possible lattice constant from the 

material structures of the supposedly ultra-hard nano-composite TiN/a-Si3N4 and nano-composite 

TiN/a-Si3N4/TiSi2 as given in [3]. We find something between 0.3714nm in a very tiny distorted region 

of the lattice and 0.4486nm as the average, which is - as we want to point out again, a minimum 

estimate clearly in favor of a maximum hardness result. Thus, the value of 0.3714nm is not really a 

lattice constant, but just the two smallest bond lengths within the system described in [3] being 

added up while a true realistic effective lattice constant surely must be much higher. For comparison, 

the lattice constant of diamond is 0.3576nm. Now again in favor of a highest as possible hardness we 

extract from the decomposition strain ε=0.1487 for the nano-composite TiN/a-Si3N4 and nano-

composite TiN/a-Si3N4/TiSi2 given in [3] the highest possible value for the decay factor p as to be 

2.151*10
4
 µm

-1
 (for diamond p=0.963*10

4
 µm

-1
). This was evaluated using the inflexion point 

decomposition estimate (1.4). From this we can derive a linear approximation for the pressure 

dependent Young's modulus E(P)=E0+b*P with b=7.3 (Fig. 1) of the supposedly ultra-hard materials 

simulated by Vepřek and Co. [3].  



 

Fig. 1:  Bulk modulus as function of the hydrostatic pressure evaluated from (1.2) and linear fit for supposed ultra-hard 

nano-composite TiN/a-Si3N4 and nano-composite TiN/a-Si3N4/TiSi2 with a parameter choice in favor of a highest 

as possible hardness. It must be pointed out however, that this choice of parameters is rather unphysical. 

 

We need to point out that this is a extreme choice, which is rather likely to be completely invalid if 

compared with the real world, but in favor of a high as possible hardness, we will use this huge b for 

our further evaluations. For this worst case estimate we used E0=450GPa and a Poisson's ratio of 

0.25. 

With respect to the evaluation of the pressure dependent Young's modulus we have made use of the 

following relations between Poisson's ratio ν, bulk modulus B and Young's modulus E: 
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As the pressure dependency of the Poisson's ratio is suspected to be negligible (e.g. [4]) we can 

directly give the pressure dependency for the Young's modulus. In the case of our effective Morse 

potential the ratios E/B0  and E/E0 are: 
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Now we follow the procedure as described in [1] section entitled "Effect on resulting Young's 

modulus within nanoindentation experiments". Again, in favor of a hardness as high as possible, we 

assume a maximum effective "tip sharpening" as described in [1]. We find that in order to obtain a 

hardness higher than 100GPa the pressure free yield strength Y0 must be above 40GPa. This might be 

considered as somehow possible, but taking the very unphysical assumption leading us to the value 

for b=7.3 the author expresses severe doubts about this to be realistic
1
. What is more, the stiffening 

effect also leads to a much sharper von Mises stress profile (c.f. fig. 8 in [1]) coming with much higher 

von Mises gradients. The plastic flow in the isotropic case follows these gradients in negative 

direction. However, with such bigger absolute gradient values pointing rather dramatically towards 

the contact rim the material will flows with much higher ferocity towards the contact rim leading to 

more flattened pressure distributions and bigger contact radii at least partially making up for the 

smaller (sharper) contact situation coming out from the pure non-linear elastic evaluation. This is just 

a hypothesis, but it directly follows from the rule of plastic flow following the negative gradient of 

the von Mises stress distribution. 

In other words: The nonlinear stiffening produces higher negative von Mises gradients, which is 

producing higher flow rates towards contact rim which increases the contact radius in the elastic-

plastic case and compensates for the sharpened contact as it would follow from a pure non-linear 

elastic prediction alone. Thus, it seems, the plasticity brings everything "back to normal" with respect 

to the classical nanoindentation analysis, especially with complete plastic zones being produced. 

Thus, the effect of higher hardness resulting from the pressure dependent Young's modulus is very 

likely to be diminished if not compensated for in the case of elastic-plastic indentation experiments. 

 

A more reasonable estimate for the decay factor appears when we use (1.3) for the evaluation of the 

critical decomposition strain, namely p=0.921*10
4
 µm

-1
 making the material in fact rather diamond 

like (for diamond we have p=0.963*10
4
 µm

-1
). The resulting much more reasonable b would then 

become b=3.8 as shown in fig. 2. 

                                                           
1
 It must be pointed out here, that such hardness could only be obtained if - and only if - the contact radius was 

measured in addition and independently from the penetration depth and load. Such a measurement system is 

not available now respectively has not been available for Vepřek and Co when obtaining their results (e.g. in 

[3]). Without such additional direct measurement feature of the contact area and by resorting to the classical 

nano-indentation analysis a b-parameter exceeding 20 (c.f. [1], fig. 10) would be necessary in order to show 

such high ultra-hardness values as reported in [3]. 



 

Fig. 2:  Bulk modulus as function of the hydrostatic pressure evaluated from (1.2) and linear fit for supposed ultra-hard 

nano-composite TiN/a-Si3N4 and nano-composite TiN/a-Si3N4/TiSi2 with a much more reasonable parameter 

choice. 

We assume an effective indenter to have formed as a result of the plastic surface form change after 

loading a surface with a perfect cone of 70.3°. The effective indenter shall be of the shape Z(r)=r
2
/2R 

with R=2µm. Figure 3 shows the first stress invariant (equal to three times the hydrostatic stress) for 

a contact situation of a diamond paraboloid pressing into our supposedly ultra hard material with a 

load of F=50mN. Applying the linear expression for B(P)=B0+b*P using the parameter b=3.8, one can 

evaluate - as a first approximation directly derived from the linear homogeneous solution - the 

Young's modulus distribution under the indenter. As equilibrium values for Young's modulus and 

Poisson's ratio we use 450 GPa and 0.25, respectively (for indenter 1141 GPa and 0.07 with b=3.8).  



Fig. 3:  First invariant stress for a fictive unloading situation (beginning of unloading) for  a supposed ultra-hard 

material with yield strength short below 42 GPa. Boundary conditions see text. 



 

Fig. 4:  Distribution of Young's modulus as result of hydrostatic stress underneath the indenter. Boundary conditions 

see text. 

 

Fig. 4 shows the resulting Young's modulus profile directly following from the pressure profile given 

in fig. 3 taking the results presented above. We see, that in fact a significant change of Young's 

modulus can be observed underneath the indenter. By weighting the obtained Young's modulus 

distribution with displacement in z-direction of the homogeneous solution one can obtain a first 

estimate for the effective Young's modulus being measurable underneath the indenter at maximum 

load. We obtain from 
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for the example above E
eff 

= 636.6 GPa, which in fact is significantly higher than the equilibrium 

pressure free value of E=450 GPa. We explicitly point out that the yield strength of about Y=42GPa 

refers to the unstressed state P=0 and thus should be denoted Y0. By also taking into account the 

pressure induced change of the Young's modulus in the indenter we can effectively take the 

"stiffening" into account by introducing  a geometrically adapted contact situation of the following 

kind [1]:
 

 
eff

llZ (r) Z(r) c* (r, z 0)= − σ =  (1.8) 



defining a changed effective indenter with shape Z
eff

 with a constant c yet to be determined. We 

need to emphasize that there are also effective indenter shapes, like the one for a flat punch with 

rounded edges, which cannot sharpen (c.f. [1]). For example, it was derived that with respect to a 

indenter of shape Z(r)=Br
n
 with n>3 this is already the case. However, regarding the ultra hardness 

examples considered here it was always stated that these experiments have been dominated by the 

elastic response and reevaluation brought n<3. Thus, we can ignore the discussion about flat 

effective indenters here, especially as this would lead to even more arguments against ultra-hardness 

(for more, the reader is referred to [1]). 

In favor of a very high hardness we now assume c such that it fully compensates for the pressure 

induced stiffening with respect to the measured penetration depth as been elaborated in [1]. Taking 

into account, that the hardness is the projected area of the contact and assuming a mathematically 

sharp cone of 70.3° a fictive hardness of 81.2 GPa would be evaluated for the contact situation given 

above. 

Another calculation with an assumed yield strength of 50.4 GPa results in a hardness of impressive 

109.4GPa. 

The question we want to answer now is whether the results shown here do support the discussed 

ultra-hardness (H>100GPa) results reported to be obtained for nanocomposite coating materials like 

nc-TiN/a-Si3N4 or nc-TiN/a-Si3N4/TiSi2 (e.g. [5] and for the discussion see e.g. [7]).  

At first it should be made clear here however, that without taking the effect of "stiffening" into 

account no such high hardness results can be obtained at all. Any classical analysis like the Oliver 

and Pharr method for nanoindentation would not take the stiffening and subsequent surface 

effective form change into account and thus would not give such high values. For our two 

examples given above the "experimental" findings would have to be 45 GPa and about 53 GPa 

instead of 81.2 GPa and 109.4 GPa. 

However, in principle and by taking the "stiffening" into account ultra hardness above 80 GPa seems 

to be possible if a yield strength of well above 40GPa is present. In [3] Vepřek and co-workers gave 

the theoretically possible yield strength as Y=2.24*(12 to 32) GPa, with the factor 2.24 coming from 

the Sachs averaging for randomly oriented crystals [6]. It should be noted however, that this 

averaging ignores any possibly weaker grain boundaries. Nevertheless, the apparent possible yield 

strength of Y=(26.88 to 81.68) GPa seem to allow hardness exceeding 100 GPa. 

The author however, taking the values of theoretical strength up to 32 GPa to be correctly obtained 

from first principle evaluations by Vepřek and coworkers, doubts the applicability of the Sachs 

averaging due to the disregard of the grain boundary effect, defects or any other weaker part within 

the material. 

Interestingly, even a Y=81.68 GPa would only result in a hardness of about 85 GPa maximum if 

analyzed classically without any stiffening taken into account or workhardening or other 

strengthening effects assumed. This can be derived from a Hertzian contact model assuming a 

paraboloid of r
2
-shape giving the elastic-plastic surface during unloading for any sharp indenter. For 

any other reasonable effective surface shape the hardness would be even smaller. And as described 

above, the "sharpened" von Mises stress profile will probably lead to a more pronounced plastic flow 

towards the contact rim leading to flattened normal stress profiles which is equivalent to effective 



indenter shapes of r
n
 with n>>2. This however, decreases the measurable hardness rather 

dramatically. 

Last but not least, following a hint of A. Fischer-Cripps (s. acknowledgments), there is a principle limit 

for the hardness one could measure with a Vickers or Berkowich indenter tip as presented in 

equation (34) in [8]. From the formula given in [8] a limit for our material in question of a hardness of 

about 60.6 GPa can be extracted. However, as this formula is based on the flat surfaced half space 

theory and thus contains the true contact area we derive about 68.7 GPa as the measurable hardness 

limit by taking the projected contact area for Vickers, Berkowich and effective cone of half angle 

70.3°. With the stiffening or sharpening effect taken into account, this value is not valid anymore, 

and thus, using an indentation analysis method which fully accounts for the non-linear pressure 

dependent Young's modulus higher hardnesses would be measurable than the limit given about 

would set. But by no means this is possible with classical indentation analysis, except in the case of 

severe flaws in measurement set up or analysis. 

An Approximation free approach based on the law of energy conservation 

In order to find an approach were we do not need to resort to an approximation of the governing 

partial differential equation of elasticity being nonlinear due to a pressure dependent Young's 

modulus we now apply a simple comparison with diamond. For this, we assume that the energy 

being stored in the elastic part of any indent must be taken on by the atomic interaction potentials of 

the atomic structure residing underneath the contact zone respectively under and around the same. 

We see immediately that this is just the energy conservation law we are going to use here. At first we 

evaluate the total energy of the elastic contact problem and combine it with the usual fitting 

approach for indentation load depth curves, which is  

 
m
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with F, h and h0 denoting load, depth and residual depth, respectively and C and m being fitting 

parameters. The result is 
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Now, as already stated above, this total energy must be distributed among the atomic interactions 

potentials under and around the contact. So we have 

 [ ]tot i i i 0i
i

E V (r ) V (r )
∀

= −∑  (1.11) 

As an example we now use the results for a "ultra-hard coating" with claimed hardness of 113.2 GPa 

[9]. Reanalyzing of the load-depth data for the indentation in question as obtained from one of the 

authors of [7] and correcting for the coating structure (6µm coating on steel) as reported in [9] the 

resulting true coating Young's modulus is about 484 GPa. With respect to the coating correction the 

reader has to be referred to the literature (e.g. [10 - 13]) as an elaboration of the method would go 

too far here. The original Young's modulus claimed for this coating by the means of the same data 



was 698 GPa [9]. It has been shown in [14] and [7] however, that even without the coating correction 

applied here, the correct result for the Young's modulus must lay well below 500 GPa (431,5 GPa 

with classical power-law fit as performed by the author, but see also [7] and [14] for comparison). 

Thus, the 698 GPa claimed by Vepřek and co-workers are a relatively doubtful result already. But 

here we want to concentrate on the hardness of claimed 113.2 GPa. By the means of [12] we can 

also evaluate the yield strength from the indentation data and find it to be around 48.6 GPa, while 

the coating hardness was found to be 64 GPa. This is rather far away from the claimed 113.2 GPa in 

[9] and so we want to investigate the principle physical feasibility of such a result in trying to find a 

potential interaction allowing such a hardness to come true in reality. 

In order to avoid any linearization or other kinds of approximation with respect to the interaction this 

time we resort to just comparing the potential of diamond with the one of a hypothetic ultra-hard 

material both satisfying the law of energy conservation as given above. It is absolute plausible to say 

that any indent with just F and h being measured could be simulated by a number N of interacting 

atoms with Potentials V(r). Averaging over all potentials one might even give just one effective 

potential, named Veff. This gives us 
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With i running from 1 to N. This way we are back to the original potential structure except for the 

average character this time. Now we only need to obtain a reasonable number for N for any given 

contact situation. The contact situation we are considering is the one leading to the claimed ultra-

hardness of 113.2 GPa as presented in [9]. Here F was 70mN. The number of atoms which 

interactions are contributing to the total elastic response during unloading must be proportional to 

the volume being elastically strained and thus proportional (somehow) to contact radius a or contact 

area A, which we can easily obtain from the definition of Hardness H=F/A. We also need to take into 

account however, the density of atoms respectively potentials being inversely proportional to the 

lattice constant or our, be it real or effective, 
3
0r . In order to avoid any guesswork about the real 

number of N, we simply concentrate here on comparing the ultra-hardness potential with diamond. 

This appears as a rather reasonable thing to do, because both materials are supposed to have similar 

strength. Any structural difference of the two will be considered and discussed later. This directly 

brings us to the following relation 

 Diamond UH

Diamond UH

V V

N N
=  (1.13) 

with the number Nmaterial (material = "Diamond", "ultra-hard material") standing for number of 

contributing interactions in the contact field volume vc been proportional to 
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and thus
2
: 
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Setting HDiamond=100 GPa, r0_Diamond=0.3576 nm, HUH=113.2 GPa we have now to find a potential VUH 

satisfying the equation (1.16). Thereby we need to take into account however, that this potential also 

depends on r0_UH, s. eq. (1.1). The potential parameters for diamond (p and ε) are taken from [2] with 

respect to ε and from 

 0 0B r3
p

4
=

ε
 (1.17) 

with respect to p. There we will use the parameters usually applied in indentation analysis, which are 

1141 GPa for the Young's modulus and 0.07 for the Poisson's ratio and result in pDiamond=0.86691. We 

also set the Poisson's ratio for the ultra hard material to 0.2 and use our fit result mentioned above 

for the Young's modulus, which was E=484 GPa. 

Now, the first interesting finding is that there is no physical meaningful solution to equation (1.16) 

for any r0_UH>0.39nm, which completely rules out the average lattice distance as it was found by 

Vepřek and co. (e.g. in [3]) being about 0.4486nm. Even a very low and already completely 

impossible r0_UH=0.38nm (note well: this must be the average of a mesoscopicly big contact region 

and we have r0_Diamond=0.3576nm for comparison) would require a potential depth greater than that 

of diamond (c.f. figure 5). 

                                                           
2
 The author is aware of the fact that differentiation of V with respect to the normal direction would allow to 

correlate the indentation experiment even more directly with the potential. However, as the results coming 

out from such an approach are even less supporting the "idea" of ultra-hardness we are not considering this 

option here. 



 

Fig. 5: Potential for Diamond, Silicon and a rather impossible hypothetic ultra-hard material. 

Of course, this survey might not be called complete and thus, we will not claim to have theoretically 

shown that ultra-hardness is not feasible, but currently we simply see no plausible way to compose 

an earth-bound material under the boundary conditions given in a physically meaningful manner. 

The author was absolutely unable to find any reasonable potential allowing or at least partially 

explaining the hardness claims made by Vepřek and co-workers in [3].  

Including compressive intrinsic stresses 

It is well known, and thus, will not be elaborated or demonstrated here, that compressive biaxial 

intrinsic stresses can increase the hardness results due to postponed onset of plastic flow caused by 

the intrinsic stress state. In order to investigate this intrinsic stress enhancement effect we simply 

resort to one example with a rather extreme biaxial stress state of rrσ = -10 GPa. The resulting 

pressure respectively first invariant stress I1 for a biaxial stress state has to be evaluated as follows: 
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From our formula for the dependency of pressure and displacement (1.2) we can derive the 

necessary displacement of r = 0.992306 r0. Figure 6 illustrates the dependency. 



 

Fig. 6: Pressure as function of lattice constant over state of equilibrium for hypothetic ultra-hard material. 

 

We now find (Fig. 7) that reasonable interaction potentials can indeed be obtained with slightly less 

peculiar lattice distances. Already for about 1.09 times r0_Diamond we obtain a solution with an energy 

minimum smaller in absolute value than that of diamond (fig. 7, blue curve). Before we conclude 

however, that ultra-hardness could be possible under such circumstances, where biaxial stress, high 

particle density and a diamond-like, but distorted structure are coming together, we should remind 

ourselves, that the assumed biaxial stress is rather high and the necessary integral (average) atomic 

density for a mixture of Ti, N, Si still is within the 10%-range of that of diamond... bulk diamond one 

should add, while the hypothetic ultra-hard nanocomposite was supposed to be a coating. 



 

Fig. 7: Potential for Diamond, Silicon and a rather impossible hypothetic ultra-hard material with an assumed biaxial 

intrinsic stress of -10 GPa. 

 

Fig. 8: Potential for Diamond, Silicon and three rather impossible hypothetic ultra-hard material with fcc-structure. 

In order to investigate this a bit more closely we now assume the hypothetic ultra-hard material to 

be of FCC-structure as being claimed to be by Vepřek (e.g. [15]). Interestingly, now we have to go to 

even more extreme lattice constants in order to reach the required boundary conditions set by the 

claimed hardness of 113.2 GPa (fig. 8). Even with an assumed biaxial stress the situation is not getting 

much better as one can deduce from fig. 9.  



It should be mentioned at this point that the lattice constant of the ultra-hard material was found to 

be around 420 pm [16]. 

This is, as we want to emphasize, more than double the biggest lattice constant being found here as 

a possible solution making the ultra-hardness results of Vepřek and co-workers at least theoretically 

feasible (assumed perfect crystal structure with no lesser dens regions anywhere in the whole 

coating). 

This makes the claims made by Vepřek and co-workers not only rather unbelievable but 

also almost embarrassing. The latter attribute must unfortunately also been given to the 

whole review performance of all those more than hundreds of publications meanwhile 

being published on this subject mainly by Vepřek and co-workers. As almost all of these 

papers sport some acknowledgement to some national or international project by which 

the work obviously was supported even more questions must be raised with respect to the 

quality of evaluation and subsequent results control of certain project proposals and the 

outcome of these projects. 

 

 

Fig. 9: Potential for Diamond, Silicon and a rather impossible hypothetic ultra-hard material with fcc-structure and an 

assumed biaxial intrinsic stress of -10 GPa. 

 

As the evaluation as outlined here is not very difficult and could also been applied to other materials 

in order to find their theoretical performance with respect to hardness measurements the reader 

might like to perform some trials with her or his own sets of parameters. The author and his partners 

have therefore set up a small program allowing to play around with parameters and repeating the 

evaluations shown here last [17]. 



Conclusions 
Taking the results of Vepřek and coworkers about the theoretical strength of nc-TiN/a-Si3N4 or nc-

TiN/a-Si3N4/TiSi2 it seems impossible to measure hardness higher than 65 GPa using classical analysis 

methods (like Oliver and Pharr). However, taking the pressure induced Young's modulus and yield 

strength into account and using such a non-standard analysis method as shown here hardness above 

100 GPa are possible for yield strength values above 47 GPa. Only if workhardening or other rather 

mysterious strengthening effects would take place during indentation also the classical analysis could 

show such high values. But this can happen only if also the highest possible strength (32 GPa) and  

the Sachs averaging are correct, which is rather doubtful because the latter ignores any grain 

boundary effects. On the other side however, the author was completely unable to find any 

reasonable atomic interaction potential allowing such high hardnesses in the first place. 

In summery the author has to conclude,  

either the ultra-hardness results reported in [5] are incorrectly measured or analyzed or both and the 

theoretical results apparently proving the possibility of hardness >100 GPa [3] are flawed or 

this study is inappropriate or incomplete or both. 

The reader is therefore motivated to repeat the evaluations made here, perhaps even extend the 

search radius and report any findings leading to better models and / or ultra-hard results. A small 

software package has been set up for exactly this reason [17]. 
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