

Saxonian Institute of Surface Mechanics

About the identification of generic tribological parameters

M. Fuchs, N. Schwarzer

Sächsisches Institut für Oberflächenmechanik

Introduction

mechanical contact tests are real life

- \rightarrow cannot be simplified
- \rightarrow difficult to model correctly
- \rightarrow theory for physical analysis is not trivial

str

Mises

currently applied theory: flat surfaces

About the model – classic basis

Pharr's concept of the effectively shaped indenter:

- mixed residual and elastic indenter stresses
- no analytical description possible
- shape
- extraction of the elastic indenter stresses

About the model – extensions

- extended to general structures, e.g.:
 - layers
 - gradients (see fig.)
 - defects
 - inclusions
 - etc.
 - surface curvature:

cylindrical coordinates

(for half space model)

 $\phi(r,z) = J_0(c*r) \exp(c*z)$

 $r = \sqrt{x^2 + y^2}$

• extended for time dependency

&

• extended to multi-axial loads

classic O&P gives phyiscal Nonsense (singularity)

O&P extended for time-dependency \rightarrow physically reasonable effective indenter

Resulting possible applications

• calculation of basic generic material parameters

real elastic modulus ($E_{Layer1}, E_{Layer2}, ...$)

profiling

Be careful with ultra-hardness results!

Visit <u>www.siomec.de/The-Saga-of-Ultra-Hard-Coatings</u> for more information.

> Young's modulus profile and yield strength profile as function of real depth

Resulting possible applications (continuation)

• time-dependent scratch testing

Evolution of von Mises stress (left) and normal stress in scratch direction (right) during scratch test on a AR coating on polymer coating (viscose).

• nano fretting testing

Evolution of von Mises stress during nano fretting tests on CrCo, TiAIV, and steel.

• wear testing

Evolution of normal stress in scratch direction during wear tests on three different coatings for automotive industry.

Conclusions

- physical tribology modeling requires generic tribo parameters (like wear or fretting parameters)
- such can be derived by ab initio modeling (c.f. Schwarzer: "Short note on the effect of pressure induced increase of Young's modulus", Philosophical Magazine, 2012)
- this requires properly calculated generic mechanical material parameters
- those can be determined using the presented Oliver & Pharr method extended by Schwarzer in the following way for physical analysis of the appropriate contact measurements (e.g. nano indentation and scratch testing):

URL to this poster: <u>www.siomec.de/pubs/2012/002</u>