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ABSTRACT 
In the present paper the formulae for the stiffnesses of a new and more general surface tester 

concept will be given and discussed. Closed form formulae are provided for the case of an elastic 

indenter on a homogenous half space. It is also shown how an extension to layered materials can 

be obtained and how the complete elastic fields can be evaluated. The new concept is based on 

the idea that the next generation of surface testers will provide the means to use all degrees of 

freedom of movement a probe on a sample surface can perform. Thus, in addition to the 

ordinary normal stiffness, lateral, tilting stiffness will be measured as well as twisting stiffness 

and then used in the subsequent parameter determination of the investigated materials. One 

could call this extension of the ordinary indentation technique a “multi-axial indentation”. It is 

shown in the paper that such concept would not only solve classical problems like “pile-up” and 

“sink-in” completely, but it would also supersede the need of area function calibration for the 

indenter tips and allow direct measurement of local intrinsic and residual stresses, anisotropy 

and many other things. 

INTRODUCTION 
Currently, the great majority of indenter machines is using one axis for indenter movement only, 

namely in the normal direction1. These machines measure independently displacement and load 

and thus, depend on just one basic equation for the analysis of the sample material. This basic 

equation is the stiffness of a mechanical contact in normal direction. It gives the result of the 

derivative of total contact load P with respect to the displacement or contact depth. 
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The symbol a denotes the contact radius and Er gives the so called reduced modulus defined as 
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1 There are currently only very few nanoindenters known to the author (e.g. one prototype as 

presented in [1] and the UNAT from the company ASMEC) which also provide measurement of 

load and displacement in lateral direction as accurate as in normal direction. Any reader aware 

of other such machines should come forward and we will update this footnote.  

 



with Ei, Es and νi, νs giving the Young’s modulus and Poisson’s ratio for indenter and sample, 

respectively.  

So, assuming that the material parameters of the indenter are known, there are always three 

unknowns in the simplest contact situation; the contact radius a, the sample Young’s modulus 

and the sample Poisson’s ratio. While the contact radius can be determined using the “known” 

indenter geometry calibrated by the means of the so called area function to the contact depth, 

either of the material parameters Es or νs must be estimated in order to determine the other. 

Usually it is the Poisson’s ratio which is estimated [2]. Unfortunately, the area-function 

procedure only works well, if the sample material shows a certain deformation behavior, or to 

put it more accurately, the deformed surface of the sample shows a certain geometry. Deviations 

from this behavior-assumption, like pile-up or sink in, can lead to significant errors in parameter 

determination. 

In this paper it is therefore demonstrated how the use of additional stiffnesses cannot only 

overcome these problems, but also open up the way for the extraction of much more material 

parameters. 

THEORY 
For reasons of simplicity and shortness we restrict the following to the case of an elastic 

homogeneous indenter only. All drawn conclusions are also valid in case of layered indenters 

and samples, but as the formulae become more complex and lengthy, one requires the help of a 

computer. Dramatic simplification is possible in the case of a rigid indenter. The interested 

reader is referred to [3]. The theory presented here is also restricted to symmetry of revolution. 

This obviously is not a big restriction, because almost all theoretical approaches concerning 

analyzing techniques for indentation testing are dealing with this simplification. Nevertheless, 

for high accuracy measurements the author has also developed approaches for the three-sided 

(Berkowich), the four-sided (Vickers) effective indenter and even asymmetric indenters. The 

interested reader might want to contact the author directly about this. 

We now consider the following additional loads and displacements: 

1. Lateral load L and lateral displacement u 

2. Tilting moment M and tilting angle δ 

3. Twisting Moment T and twisting angle β 

As the stiffnesses for other degrees of freedom of probe or indenter movement on the surface of 

a sample are all defined as derivative of the load with respect to the displacement, we can find 

the following 6 stiffnesses: 
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S2=a (C3i C4i+C3s C4s)/(-C2i (C3i+C3s)-C2s (C3i+C3s)+(C1i+C1s) (C3i C4i+C3s C4s))  

S3=(a2 (C2i+C2s))/(-C2i (C3i+C3s)-C2s (C3i+C3s)+(C1i+C1s) (C3i C4i+C3s C4s)) 

S4=-((a2 (C3i+C3s))/(C2i (C3i+C3s)+C2s (C3i+C3s)-(C1i+C1s) (C3i C4i+C3s C4s))) 

S5=-((a3 (C1i+C1s))/(C2i (C3i+C3s)+C2s (C3i+C3s)-(C1i+C1s) (C3i C4i+C3s C4s))) 

C1i=((1+νi) (π ϑi (1+ϑi2)-(1+4 ϑi2) (-1+νi) Tanh[π ϑi]))/(4 Ei π (ϑi+ϑi3)) 

C2i=(3-3 νi-6 νi2)/(8 Ei π+8 Ei π ϑi2) 

C3i=(3-3 νi-6 νi2)/(8 Ei π+8 Ei π ϑi2) 

C4i=1/ϑi 

C1s=((1+νs) (π ϑs (1+ϑs2)-(1+4 ϑs2) (-1+νs) Tanh[π ϑs]))/(4 Es π (ϑs+ϑs3)) 

C2s=(3-3 νs-6 νs2)/(8 Es π+8 Es π ϑs2) 

C3s=(3-3 νs-6 νs2)/(8 Es π+8 Es π ϑs2) 

C4s=1/ϑs 

The stiffnesses can be evaluated by using the equations given by Fabrikant [4] and Schwarzer 

[5]. There it was assumed that in the cases of lateral and twisting movement the measurement of 

the stiffness can be performed in such a way that only very small displacements occur and the 

indenter can be modeled as if it was completely bonded. This could easily be achieved by small 

oscillatory movements also transferring either force or displacement measurement to high 

accuracy time measurement.  

However, it is also possible to evaluate and analyze the situation in cases of higher lateral or 

twisting displacements usually coming with partially bonded instead of completely bonded 

indenters as considered for the reason of shortness and simplicity. For these much more 

complex contact situations we need to distinguish between the (inner) bonded area and an outer 

region being in contact, but not bonded. Figure 1 shows the resulting indentation behavior 

caused by this complex contact situation. The red ellipse in Figure 1 marks an area where the 

resulting nonlinear lateral force to lateral displacement behavior can be seen pretty well. In the 

case of a completely bonded indenter, which suddenly starts to slide everywhere along the 
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Figure 2: FilmDoctor®-evaluation [6] of the mixed contact

behavior shown in figure 1. 

Figure 3: Two-fold contact area of partially bonded indenter fitted to the experimental lateral 

loading curve. 
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HYPOTHETICAL APPLICATION: AN EXAMPLE 
Let us assume that we posses a surface tester of the next generation allowing us to measure all 

stiffnesses given above. At first, we might like to compare S3 and S4. They would be equal only in 

the complete isotropic case. So, we could determine the “amount” of anisotropy of the surface of 

any sample locally by simply comparing S3 and S4. The more they diverge, the higher the 

anisotropy.  There is also a solution for high anisotropy available directly from the author. 

The next step would be to build the quotient Q6 equal to S2 over S1. 

 (9) 

Figure 4 gives the dependency on the sample Poisson’s ratio for the example of a diamond tip 

and a variety of sample Young’s moduli. 

 

Fig. 4: Ratio of lateral to normal stiffness as defined in equation (9) as a function of the sample 

Poisson’s ratio (red � Es=10GPa, green � Es=100GPa, light blue � Es=500GPa, blue � 

Es=1000GPa).  

 

As the material properties of the indenter should be known, equation (9) does not contain any 

other unknown material or contact parameters, except for the Young’s modulus of the sample 
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Es. Thus, it is a very general expression allowing a rather significant connection of S2/S1 with the 

unknown Poisson’s ratio of the sample. 

In a next step we determine the stiffness S3 and build the quotient Q=S3/S2.  

  (10) 

With this additional information we can establish the following results: 

 (11) 

  (12) 

With the constants A, B and Hi given as: 

A=(νi+2νi2-1)*(1+ϑs2),  B=Ei(1+ϑi2)*(νs+2νs2-1)  and  Hi=(1-νi2)/Ei. 

The substitution of Es from equation (12) and a from equation (11) in equation (9) now allows 

us a determination of the sample Poisson’s ratio directly from the measurement without any 

approximation or estimation as necessary in the classical Oliver and Pharr method [1]. After that 

the contact radius a and the sample Young’s modulus Es can be obtained from (11) and (12). 

This means, that just by measuring certain surface stiffnesses of the sample, it is not only 

possible to determine the Poisson’s ratio directly, but also to measure the contact radius without 

the need of knowing the indenter geometry and calibration (so called area function calibration). 

However, by keeping the procedure of area function calibration and measuring also the other 

stiffnesses left out so far, one might extract even more material parameters like the intrinsic 

stresses as described by the author elsewhere [6]. 

The method can also be extended to layered materials. The complex math behind this problem 

however, requires the use of computers and thus, the author has developed a software package 

performing the necessary evaluations [7]. Unfortunately, there is currently no surface testing 

machine available for the combined measurement of the stiffnesses as described above. Thus, 

we only demonstrate the principle possibilities of the software in modeling a mixed contact 

situation for layered materials. As an example of combined tilting, lateral and normal loading we 

have investigated a spherical probe scratch test with linearly increasing normal load on a rough 

surface (two layers) which topography has been scanned before. The result is shown in the 

following video animation http://www.siomec.de/downloads/020. The reader should especially 

pay attention to the fact, that the partially dramatic change in the stress field is mainly caused by 
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the tilting moments and change in lateral loads due to the effect of surface inclination during the 

scratch over the rather rough surface.  

CONCLUSIONS 
It has been demonstrated how multi-axial indentation techniques can be used to determine 

additional material stiffnesses together with the normal stiffness. This allows the extraction of 

more material parameters and the contact radius in a directly manner without the need of area 

function calibration or knowledge of the indenter geometry. In the hypothetic example given in 

the paper, three stiffnesses, namely normal, lateral and lateral load to tilting angle, have been 

used to determine contact radius, Poisson’s ratio and Young’s modulus directly. But even more 

can be achieved when all degrees of freedom of indenter movement are used in future surface 

testing machines. 
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