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Preface 
This habilitation thesis collects and summarizes original research on mechanical contact for 

the case of layered materials, which the author performed in the years 1998 to 2002. 

The thesis consists of two parts. The first part is intended to give an introduction and 

figurative understanding of those parts of the original research being collected in the second 

part. In addition it gives extensions and applications of the latter in order to demonstrate the 

principle potential of these approaches. It is organized as follows. First, in the introduction 

part a rough overview of the “state of the art” concerning the external and internal mechanical 

loading of layered materials is given. Then a manly figurative or verbal presentation of the 

theoretical approaches crucial for this work is presented. Here the method of “image loads” 

for the modelling of mechanical contact problems for layered materials and two extensions of 

this method are presented together with an approach allowing the complete three dimensional 

modelling of intrinsic stresses for coating-substrate systems. In chapter three a selection of 

examples for the application of the above approaches is given. Finally, chapter 4 is devoted to 

a short summary and outlook. 

The second part of the thesis is a selection of reprints of original publications in refereed 

journals, which are crucial for this work. All references available there will be addressed with 

the capital letter “C” before their number throughout this thesis. To give an example, the 

paper being addressed with [C2] can be found as the second paper within the reprint-

selection-part of this work. All these publications might differ in few details from the journal-

printed versions and are only intended to deliver a convenient insight into the content of the 

paper. However, the reader is referred to the original publication. Only the most important 

papers containing some of the cumbersome and long evaluations necessary for this work are 

made available as reprints. So the number of reprints was restricted to three. However during 

this Habilitation time, the author has also published 6 yet unrefereed contributions as well as 

14 further refereed articles, which are treating additional applications or extensions of the 

reprints. But because the immense volume of this work and its relatively broad field of 

possible applications these publications have not been reproduced here. In addition there are 

five software and computer video packages, which resulted directly from this work. Their 

references are listed after the table of contents. 

The work presented here would have been impossible without the contribution of many 

friends and colleagues. I am thus grateful to Prof. F. Richter and Prof. G. Hecht from the 

Technical University of Chemnitz for their continuing support and the uncountable number of 

interesting and helpful discussions. I am furthermore greatly indebted to Prof. M. Swain from 
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the University of Sydney and Prof. G. Pharr from the University of Tennessee who both 

happened to be greats host during my stays in their institutes and who managed to provide a 

fruitful mixture of guidance and motivation for my work. Particular thanks are given to Dr. T. 

Chudoba from the company ASMEC who not only developed an easy to use software 

package using some of my results but also achieved amazingly impressive experimental 

results in applying my theoretical approaches that in some cases even the author would never 

have imagined as being possible. The record in measuring the Young’s modulus of an only 

4.3nm thin coating using spherical indentation definitively belongs to this kind of positive 

surprises. Over the course of this work, many other colleagues have contributed ideas and 

suggestions for which I am thankful. 
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1. Introduction 
The utilisation of thin films in numerous different fields of practical daily life has 

dramatically increased in the recent years. A considerable number of companies is providing a 

variety of coatings for such different fields like e.g. the automotive and aircraft industry, high 

energy applications and even medical devices and implants. The spectrum of goals being 

pursued with the trend of utilisation thin films appears to be amazingly broad. So plans for 

example the truck building industry to increase the use of coatings in order to obtain 

improvements in the following areas [1]: 

• power increase, 

• mileage increase from 1,2 up to 2Mkm, 

• weight reduction, 

• emission reduction. 

But looking behind the curtains and asking for the technical problems one has to solve to 

contribute to the above mentioned points one gets the following answers [1]: 

• increasing of the load bearing resistance, 

• reduction of friction (thus reduction of internal losses), 

• wear reduction, 

• higher service temperatures 

• solving heat transfer problems. 

The first three of the technical problems are directly related to the field of mechanical contact 

problems. So one easily comes to the conclusion that product improvement using thin films 

needs in quite a lot practical applications considerations of the problem of mechanical loads 

on layered materials. And this does not hold for the automotive industry only. There are many 

other examples of applications of thin films where a mechanical contact of the coated body 

with a counterpart is formed and the mechanical interaction is unavoidable (e.g.: thin films 

intended to provide good electrical contact in switches and plugs, coated tools like drills and 

punches, or optical thin films on surfaces which are additionally exposed to mechanical 

contact). In all these cases, the lifetime and reliability of the coated item is determined to a 

certain extent (and in many cases completely) by the mechanical interaction (Figure 1). In 

addition the intrinsic stresses (or more accurate the intrinsic elastic field) remaining from the 

deposition process have to be taken into account. In this context, knowledge of stress and 

strain fields arising in the film-substrate system due to the mechanical contact and the 
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intrinsic field would be very useful, for instance for failure analysis or for the optimum design 

of film systems with improved durability.  

 

Figure 1: Schematic figure for the contact between a coated body and an indenter, which acts with 

a normal P and a tangential force component T. 

 

In this work the author presents simulation procedures (mathematical models) with the aim to 

help determining and analysing the mechanical properties of coating-substrate-systems and 

finding an “optimal” coating structure which should protect the compound from inelastic 

deformation under a given range of load conditions. Such procedures may be used as a tool to 

minimise the search field for experimental work. For this purpose one would need a 

mathematical model which allows one to calculate the complete elastic field with all its 

displacement and stress components within a multilayer film on a substrate under given 

mechanical loading and intrinsic stress conditions.  
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1.1. External mechanical loading of layered materials – “state of the art” 

State of the art does not mean that the author here gives a comprehensive overview of all 

publications and works being related to this topic but only the most important ones for the 

later considerations within this work will be mentioned and discussed. 

Several approaches from other authors are known which investigate the above mentioned 

problem of loads on layered materials with integral transform, perturbation or semi-empirical 

methods. Doerner and Nix [2] have published an approach which deals with effective material 

constants for the Young’s modulus and the Poisson’s ratio of coating and film (single layer) to 

describe the elastic behaviour of the compound. The resulting effective constants are suitable 

combinations of the material parameters of both constituents. Using integral transform 

methods, Gupta and Wallowit [3] have found a solution for the contact problem of two 

cylinders in contact, where one of them is assumed to be coated with an elastic layer. Later, 

three dimensional problems were treated utilising this method (see e.g. the paper of Stone [4] 

where both completely and transversely isotropic materials were considered). The advantage 

of the integral transform method lays in the relatively high number of layers which can be 

treated, while the necessity of the integral transformation may be taken as a disadvantage. 

Alternatively, perturbation methods to solve contact problems for layered materials were used 

for example by Gao, Chiu and Lee [5] as well as Gao and Wu [6]. Here, the coating was taken 

as the perturbation of the substrate in a first approximation. Looking closely at the evaluation 

in the papers [5] and [6] one could get the impression that the “perturbation” as claimed by 

the authors is very similar to the first step of the image-load-method as proposed here. That’s 

why the author would call the method in [5] and [6] an incomplete image-load rather than a 

perturbation-method. At least it would be mathematically equivalent. A complete analytical 

approach for contact problems with materials of varying Young's modulus that may be 

expressed as E=Em*zm (Em=constant, z – co-ordinate in the direction of the axis of indentation 

and m an arbitrary parameter in the range 0≤m<1) was given by Popov [7] (see in addition 

[8], pp. 182). The method applied there is based on the results of Rostovtsev [9]. 

Unfortunately, it cannot be extended to describe multilayer structures as proposed here. 

Finally, there have been numerous numerical solutions to the contact problem using the finite 

element method and the boundary element method (see e.g. [10-12]). These techniques do 

have some advantages for treating the nonlinear elastic-plastic problem. 

In this work, the final solution of any contact problem for the layered half space will be 

developed from that of the homogeneous half-space by an uncompromising use of the method 

of image charges of potential theory [C1], well known from electrodynamics. This method 
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provides complete analytical solutions that can be expressed in elementary functions and 

closed form, as long as the solution of the corresponding contact problem for the homogenous 

half space is known and elementary. Many such “homogeneous” solutions for various contact 

problems have been published in recent years (e.g. [13 – 20]). The main advantage of the 

method described here is the opportunity to find the complete analytical solution of the 

problem of a load acting on a layered body by extending the corresponding “homogeneous” 

solution utilising a straightforward mathematical procedure. Meanwhile various experimental 

proofs and applications of the method have been published [22-28]. In addition the reader can 

find an easy to use software package, which allows to calculate the complete elastic field for 

different load problems on layered half spaces [21]. The disadvantage is the relatively low 

number of layers (<6) which can be treated within an acceptable calculation time. While the 

evaluation of the elastic field of a one layer contact problem using ELASTICA needs only a 

few seconds on a usual PC (CPU: Pentium 450MHz, 256MB RAM) a 3-layer system already 

requires about 1 minute. Here, only solutions for the Hertzian contact problem using circular 

[16] and elliptical [20] contact shapes will be used for the contact modelling as they are of 

practical relevance. In addition in order to treat more complex contact shapes the 

superposition of load dots is applied. 

1.2. Internal mechanical loading of layered materials – “state of the art” 

Intrinsic stresses within thin film-substrate compounds are mainly caused by atomic mismatch 

at the interface between substrate and coating, thermal stresses resulting from the difference 

between deposition and room or service temperature and other effects like for example ion 

bombardment coming from the deposition process itself. Apart from finite element 

calculations dealing with the problem of intrinsic stresses (see e.g. [32]) and very few 

somewhat more general approaches (e.g. [33], [34]) the problem of intrinsic stresses has 

mostly been considered using the so called “thin plate simplification”, which neglects all 

stress components pointing in the direction of the plates normal axis. A plate-like form of the 

film-substrate-compound means that the total thickness, htot, is constant and small in 

comparison to its lateral dimensions. So, if one takes for example the z-axis as the normal axis 

of the coating-substrate-system one has to set: 

 0xz yz zzσ σ σ= = = . (1) 

A first consideration of the effect of intrinsic stresses came from STONEY [35] who has 

published a simple formula describing the bending of a coated bar in dependence on the 

intrinsic stress within the film. This internal stress in the film on a bar or also on a plate-like 
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substrate causes the film-substrate compound to warp until mechanical equilibrium is reached, 

i.e. until both net force and bending moment are zero. From the curvature of the elastically 

deformed coated substrate the average film stress, σf, can be calculated. This method is very 

popular since the curvature of the bent substrate can easily be measured and no information 

on the elastic parameters of the film material is necessary. As substrate material often silicon 

is used since its mechanical properties are well defined and well known. If necessary, small 

beams (cantilevers) can be made of single-crystal silicon using micromechanical technology 

[36] which allows to apply the method also to very thin films. When the thickness of the film, 

hf, is small compared to that of the substrate, the above mentioned simple formula of STONEY 

[35] holds. It can be given as follows: 

 
2 1 ,

6
f s

zz s
f

hE
h R

σ ≈ −  (2) 

with R - radius of curvature and Es - YOUNG´s modulus of the substrate. In those cases, where 

the film is not thin compared to the substrate this formula has to be modified [47]. In its 

original form, the STONEY formula is valid only for a narrow coated beam. The index “zz” 

denotes the stress component in direction of the length side of the beam which we chose to be 

along the z-axis. 

When measuring thin films deposited on plate-like substrates, the corresponding biaxial 

deformation has to be taken into account [37] by using the biaxial modulus, Eb,s, of the 

substrate rather than the YOUNG´s modulus alone: 

 Es → Eb,s = Es / (1 - νs)  (3) 

with νs - POISSON´s ratio of the substrate. This corresponds to the cap or bowl-like 

deformation of a circular substrate under the influence of intrinsic film stress. Since many 

solid materials have POISSON´s ratios between 0.2 and 0.3, using the biaxial modulus instead 

of Es yields a modification in the calculated σf values by 25 to 43 %.  

For practical reasons, instead of a circular substrate often an elongated rectangular substrate is 

used, either as a "macroscopic" strip having a length in the centimetre range, or as a 

micromechanical cantilever typically few 100 µm in length. It was argued [38] that such a 

substrate rather curls into an approximately cylindrical shape instead of bowl or cap-like 

deformation. Therefore, in STONEY´s formula Es should be replaced in this case by the plate 

modulus, Ep,s, rather than by the bipolar modulus of the substrate: 

 Es → Ep,s = Es / (1 - νs
2).  (4) 
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In the meantime, this apparently plausible argumentation was repeatedly followed in the 

literature [39]. Considering transverse contraction in this manner modifies σf only by 4 to 9 % 

when typical νs values between 0.2 and 0.3 are assumed. But it has been shown in [40] that in 

the case of plate-like coating-substrate-compounds the assumption of a cylindrical bending 

shape as outlined in [38] is wrong. Provided that  

• hs << b (b<a with a and b denoting the two sides of the rectangular substrate) , i.e. 

provided the plate approximation (1) is valid and 

• the film thickness hf is small compared to the substrate thickness hs, thereby assuring a 

constant film stress over the whole substrate, 

the coated substrate gets a constant curvature everywhere on its surface. In particular, even for 

an elongated, strip-like substrate a cap or bowl-shaped deformation is formed, as far as the 

smaller side of the strip is large in comparison to the substrate thickness. This is the case for 

many substrates, both macroscopic strips and micromechanical cantilevers used in 

laboratories for stress measurement. Then, the YOUNG´s modulus in STONEY´s equation (2) 

has to be replaced by the biaxial modulus rather than by the plate modulus. Otherwise, the 

stress values determined would be too big by a factor of  

     (1 - νs
2) / (1 - νs) = 1 + νs,  

i.e. by 20...30 % for typical νs values of 0.2...0.3. This insight is of great importance for the 

further considerations within this work. Because here the effect of intrinsic stresses on the 

resulting stress fields of external loads shall be discussed and consequently only correct 

assumptions for the intrinsic stresses can guarantee sufficiently correct resulting elastic fields 

of the combined internal and external loading. At the end of paragraph 2.2 of this work we 

will discuss the possibility of a complete analytical prove to the argumentation brought in [40] 

applying the existing mathematical approaches.  

An investigation of the boundary conditions for the validity of the plate-approximation as well 

as a very useful collection of formulae concerning its application in the case of layered 

materials can be found in [47]. 

2. About the Theory 
In order to avoid cumbersome and boring evaluations within this more general survey all 

complex derivations absolutely necessary to repeat the calculations leading to the results 

presented here are embedded in separate papers specialised in the topic of question. These 
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papers are either mentioned in the reference part or – in the case of crucial contributions – 

printed in full in the reprint-part. Here we will therefore concentrate on a more “verbal 

understanding” of the models and methods developed and used by the author. Only so far 

unpublished results need to be elaborated in more detail. 

2.1. Arbitrary load distribution on inhomogeneous half spaces 

This problem can easily be treated by the method of image loads. In addition to the already 

mentioned paper concerning the usage of this method in order to solve mechanical contact 

problems in layered elastic spaces [C1] the interested reader may find useful procedures and 

results in the following publications [C2, C3, 22 - 31]. The mathematical principle is rather 

simple: All interfaces and the surface will be treated as boundaries at which special conditions 

for the elastic field have to be satisfied. Starting with the known “homogeneous” solution for 

the load conditions in question, one has to add potential functions to the existing solution 

which will satisfy the additional boundary conditions at the interfaces. One may readily 

illustrate the resulting structure of the final solution as follows. We consider a layered or 

“coated” half space and investigate the elastic field within the area 0≤|z|<h (here, z=-h: 

position of the interface). An observer in this zone may consider the resulting elastic field as a 

product of an arbitrary contact on a non-homogeneous (in this case layered) half space. 

Alternatively, one may consider the complete space as homogeneous and interpret the sets of 

additional potentials as additional loads which act from the positions z=2h, z=-2h, z=4h, z=-

4h..., and so on (Figure 2).  
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Figure 2: Figurative presentation of the mathematical method used in this paper for a hypothetical 

contact (see text). Units in directions x, y and z are normalised to the thickness of the 

coating h. 

 

In the same manner the observer would interpret the elastic field in the |z|≥h zone as one of a 

homogeneous infinite space with the original contact force at z=0 and additional loads from 

the positions z=2h, z=4h, z=6h,... and so on corresponding with the added potential functions. 

Within this work the von Mises stress σM will be considered intensively. It is given as: 
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 ( ) ( ) ( ) ( )( )2 2 2 2 2 21 6*
2M xx yy zz yy xx zz xy xzσ σ σ σ σ σ σ τ τ τ= − + − + − + + + zy . 

2.1.1. Extensions 

2.1.1.1. Arbitrarily shaped interfaces  

The method can be extended to arbitrarily shaped interfaces [49]. This extension is of great 

importance because it offers the opportunity to investigate curved interfaces occurring for 

example in the case of relatively rough substrate surfaces. An example, the “overfilled 

trench”, is given in [49]. But because the mathematical method requires relatively complex 

and voluminous elaborations, which would completely burst this work we will here neither 

consider the theoretical approach nor give any application. The interested reader is referred to 

the above-mentioned publication, being directly available from the author. 

2.1.1.2. Gradient coatings 

Furthermore an extension to gradient coatings is possible in those cases where the Poisson’s 

ratio does not vary within the coating but only the Young’s modulus. One comes to an 

approximated solution of this problem by a simple superposition of the elastic fields for 

varying positions of interfaces. This becomes clear if one considers the following different 

forms of representation of a linear decreasing Young’s modulus dropping from its maximum 

value Emax at the surface z=0 to the substrate value ES at the interface z=h: 

 max max
max max

1

lim
( ) * *

n
S

i

E E E E hE z E z E i
nh n=

− S

n
−  = − = − Φ   → ∞   

∑ , (5) 

with 

 
0

( )
1

for z h
h

for z h
≤

Φ =  >
 (6) 

giving the so called Heaviside function. On the right hand side of equation (5) the gradient 

transition between the Young’s modulus Emax and ES over the thickness h has been 

represented as an infinite sum of abrupt transitions (jumps) Emax to ES at various positions 

0 z h. But because it is exactly the abrupt transition of the Young’s modulus we are able to 

model applying the method of image loads we simply need to build up a sum of a sufficiently 

large  number of suitable one-layer-solutions with varying interface positions to come to an 

approximated description of the gradient-layer-problem. The reader might have realised that 
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this holds for all forms of E(z) as long as they are monotonic, because for these types of 

functions one can find a representation similar to that given on the right hand side of (5). This 

more general approach would take the form: 

 ( )1
0

1

lim
( ) *

n

i
i

EE z E h
nn =

  
= + Φ ∆  → ∞   

∑  (7) 

or as for any function f(z) within a range [z0,z0+h]: 

 ( ) ( ) ( ){ }0 0 1
1 0 0 2
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* (

n
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f z h f z if z c f f z h f z c
nn n

−
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 + −
)

   = + Φ + − +     → ∞     
∑ , (8) 

where f-1(z) defines the inverse function to f(z). For example, we can give a quadratic function 

f(z)=z2 in the following Heaviside description: 
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n
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* ih

  
= Φ     → ∞     

∑ . (9) 

0.2 0.4 0.6 0.8 1 1.2 1.4
z ê µm

100

200

300

400

500

EHzL ê GPa

 

Figure 3: Approximation of linear decreasing Young’s modulus (straight line) using a representation 

with Heaviside function (zig-zag-line: here only 10 Heaviside functions have been used in 

order to make the approximation visible). 

 

In addition it should be noted, that the following generalisations/extensions to the gradient 

approach are possible:  
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1. This approach is also valid for a parameter combination of Young’s modulus and Poisson’s 

ratio as one simply writes (7) in the form: 

 ( )1
0 0 0

1

lim
( ) ( ); ( ) ( ); ( ) *

n

i
i

kE z E f z z f z f z k h
nn

ν ν
=

  
= = = + Φ ∆  → ∞   

∑ , (10) 

meaning, that within a given range both, the Young’s modulus and the Poisson’s ratio, are 

being varied from a starting value Estart and nstart to an end value Eend and nend with a z-

dependence proportional to the function f(z). Figure 3 shows an example of a linear 

decreasing Young’s modulus. 

2. For not simply monotonic functions,  for example first decreasing and later increasing E-

modulus and n-functions the approach (10) (or any proper combination of terms of this kind) 

could be combined with the multilayer approach of [C1] and thus very complex parameter 

functions like e.g. E(z)=E0 + E1 sin(z) and n(z)=n0 + n1 sin(z) could be treated, where only for 

each change of monotony a new layer has to be modelled. So, applying the new gradient-

approach to a three-layer solution one could mathematically describe the above assumed 

trigonometric approach within a range of two ranges of monotonic values and therefore e.g. 

from 
2

z π
= −  until 5

2
z π

= . Figure 4 shows an example for such a periodic parameter 

function. It has the concrete form E(z)=300GPa+200GPa*sin(z-p/2). 
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Figure 4:  Approximation of a periodic Young’s modulus (straight line) using a representation with 

Heaviside functions (zig-zag-line: here 63 Heaviside functions have been used). 



 22

If P(hi) gives the potential function for the solution of a one-coating-half-space with coating 

thickness hi we construct the final approach for a gradient coating in the form: 

 ( )i i
i

w P h G
∀

≅∑ , (11) 

with wi and G denoting suitable constants and the correct solution, respectively. Even if the wi 

have to be determined using a less approximated solution (e.g. a multi-layer solution applying 

the integral method) the final advantage in the calculation time justifies the usage of this 

gradient approach. For example, applying the integral and the approximate gradient method to 

a 10-layer system the gradient method calculates the complete elastic field about 6500 times 

faster with a deviation from the integral approach nowhere bigger than 0.3%. In Figure 5 the 

displacement w is shown as a function of the depth for an example of a 11-layer-“gradient” 

(calculation parameters: load p=1N, deviation from the axis of symmetry x=0.1µm, radius of 

contact a=1µm, Poisson’s ratio 0.3, Young’s modulus {3, 2.8, 2.6, 2.4, 2.2, 2, 1.8, 1.6, 1.4, 

1.2, 1, 0.8}*100GPa – from top layer to substrate, thickness see gridlines in Figure 5). 
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Figure 5: Displacement w as a function of depth for a 11-layer-system using the gradient approach 

(black line) and the integral approach (dots). The gridlines give the positions of the 

interfaces. In addition the single-layer solutions for systems with a 300GPa-coating on a 

80GPa-substrate with interfaces at 1µm (blue) and 2µm (green) are shown. 
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2.2. The intrinsic stresses 

In those cases, where the coating-substrate-compound can be considered as plate-like and the 

film thickness is small compared to the substrate thickness the following two assumptions can 

be made [37, 40]:  

• the thin plate approximation is valid, 

• the film-stress can be considered as being independent from the distance of the 

interface (here the z-axis shall be parallel to the plate’s normal). 

This automatically yields a linear z-dependant stress within the substrate [47] and we obtain a 

very simple stress distribution where only the stress tensor components σxx, σyy, τxy=σxy are of 

importance. If we in addition assume to have isotropic or transversely isotropic (with the c-

axis parallel to the substrate normal) substrate materials of symmetry of revolution and 

homogeneous deposition conditions over the whole substrate surface we result in only one 

governing stress value σrr, which is the radial stress1. While this stress is widely assumed [37] 

to be homogeneous within the film it follows a linear z-dependant function within the 

substrate. This principle distribution of the σrr stress component occurs only under the above 

mentioned conditions. 

Unfortunately for most cases, like coated tools, car components or massive lenses, the 

assumption of a plate-like film-substrate-compound is not valid and thus the stress 

distribution might be completely different from that one described above. This holds 

especially for the substrate. For the film however we still can assume, that σzz=0 is valid and 

the biaxial stress is homogeneous over the film thickness as long as the film is thin and there 

is no significant displacement, phase transition or other inelastic effect of any of the parts of 
                                                 
1 One can evaluate this by combining the thin plate approximation (1) with the isotropy condition for material 

properties and deposition process (σxx=σyy, σxy=0) and the following transformation rules: 

 2 2cos sin 2 sinrr xx xy yy xxσ ϕ σ ϕ σ ϕ σ σ= + + = , 

 2 2cos 2cos sin sinyy xy xx xxϕϕσ ϕ σ ϕ ϕ σ ϕ σ σ= − + = , 

 cos 2 sin 2 ( ) / 2 0r xy xx yyϕσ ϕ σ ϕ σ σ= − − = , 

yielding: 

 . 
0 0

0 0
0 0 0

rr

ij rr

σ
σ σ

 
 =  
 
 



 24

the film causing local stress releases. This becomes clear if one notices that the linear z-

dependant stress distribution within the substrate is caused by the bending of the compound 

but in all cases of non-plate-like substrates this is not possible. So the question arises: If we 

can still assume a constant f
rrσ  stress distribution for the coating, how could we come to a 

suitable stress description for the substrate? 

To answer this question we assume the coating as to be separated from the substrate and 

pressed at its rim such, that exactly the bi-axial intrinsic stress state with σxx and σyy appears. 

This pre-stressed coating is now “stuck” on the substrate. The external forces Fx and Fy 

producing the pre-stress-state are removed allowing the coating-substrate-system to find its 

equivalency. The former forces acting on the rim of the coating must be now taken on by the 

elastic stiffness of the substrate. They, the forces, couple into the substrate as shearing forces 

Sx and Sy via its surface. In order to simplify the calculation we consider a substrate of square 

geometry with the side length s. We do not know yet the distribution of this shearing stress on 

the substrate surface so we start with a general solution of the problem, which can be given 

due to the following displacements: 

 (12) 

( ) ( )( ) [ ] [ ]
( ) ( )( ) [ ] [ ]

( )( ) ( )( )( ) [ ] [ ]
,
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∀
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 + + − − +
 
 = + + − − +
 
 − + − − − + − + 

∑

with u2=a2+b2 and ,i b
s s

ka π π
= =  and i,k=1,3,5,7…, which assures the normal stresses σxx 

and σyy being zero at the substrate rim. The shearing stress σxy should be also zero there, but 

this condition can not be satisfied with the approach suggested in equation (12) as easy as the 

normal stress boundary conditions. In this case a suitable Fourier series would be necessary. 

However, because we will here only  concentrate on the elastic field at the centre of the plate 

the influence of a non-zero σxy at the rim of the plate can be considered as being small. It can 

be shown that (12) satisfies the equation for equilibrium for an isotropic elastic medium (see 

e.g. [4]). The further boundary conditions: 
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f x y
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= = = == =

− −
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= = = = = =∫ ∫ ∫ ∫
 

give the equations necessary to determine all constants including the coefficients cik. 

In the case of thin films and plate-like substrates this new approach should agree with the 

results given by the equation of Stoney [47]. To test this we apply a very simple first order 
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approach of the general formulae (12) with i=k=1 and all cik for i,k>1 being 0 on the 

following system: 

Table 1: Mechanical parameters for a system of a 1µm TiN-coating on silicon 

 Young’s modulus Poisson’s ratio Thickness 

coating 450 GPa 0.25 1µm 

substrate 164.4 GPa 0.224 hs = 200µm 

 

Assuming now an intrinsic stress of σxx=σyy= -1GPa we vary the side length of our square 

substrate from relatively plate-like 3000µm (15*hs) down to 20µm.  
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Figure 6: Curvature of the system given in Table 1 (vertical axis) for various side length s assuming a 

bi-axial coating stress of –1GPa. The horizontal line gives the corresponding value of the 

Stoney equation. 

 

Figure 6 gives the values for the curvature (approximately the inverse of the radius of 

curvature) of the bent substrate at its centre position (x=y=0, z=hs/2). We see, that from a side 

length of about s=10*hs upwards the curve has reached its asymptotic value with a deviation 

of only 1%. The agreement with the result given by the Stoney equation is quite excellent 

(only 2% deviation). This is especially remarkable because of the very simple first order 

approach we have chosen for the shearing stress distribution on the substrate surface. 

However more accurate calculations should be performed if one wants to apply the general 
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approach (12) to analyse experimental data. But in this case a more critical discussion about 

the principle shape of the shearing stress distribution resulting from the deposition process 

seems necessary. 

Unfortunately the approach (12) can not be extended to the general case of rectangular 

substrates. The reason lays in the properties of the approach, which can not satisfy 

independent boundary conditions for both the σxz and the σyz stress on the substrate surface. 

Such an approach would be very helpful in order to give complete analytical prove to the 

principle argumentation in [40] (see 1.2.) but so far the author was unable to find a more 

general solution. 

3. Application of the theoretical models 
In the papers [21-31]  a number  of different applications of the theoretical modelling 

described above are given. Among them we have: 

• the realisation of an easy to use software package allowing the calculation of the 

elastic field for Hertzian load and contact problems (normal and tangential load) for 

coating-substrate-systems with up to three layers [21], 

• analysis of experimental data of nanoindenter experiments of one-layer-substrate-

compounds [22, 23, 29,31], 

• analysis of experimental data of nanoindenter experiments of 2-layer-substrate-

cpmpounds [25], 

• application in dentistry [26] and 

• in fracture mechanics [27], 

• general modelling of coated systems and questions of coating optimisation [24, 28, 

30]. 

Here we will concentrate on the following three problems: 

• the increase of the load carrying capacity of multilayer-compounds for mixed load 

conditions (normal and tangential loads) with very high friction coefficients, 

• the superposition of Hertzian loads on coating-substrate-compounds as a method to 

describe relatively complex load distributions and 

• how to measure the intrinsic stress using nanoindentation methods 
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3.1. Coating design for mixed load conditions with very high friction 

coefficients 

Due to the availability of software packages like ELASTICA [21], the problem of finding a 

proper protective 1-layer coating for a mechanical application within the linear elastic regime 

has been reduced to a relatively simple evaluation of a variety of different parameter 

combinations. Future versions of this software will provide highly automized procedures in 

order to simplify this process for the user. In [48] a good animated demonstration is presented 

showing the principle steps for such an optimisation process using the existing version of 

ELASTICA. However especially in cases of mixed load conditions or practical restrictions of 

the coating thickness and its mechanical parameters, single-layer coatings can often not 

provide a sufficient protection and thus more layers or even gradient coatings must be 

considered. A demonstration for two examples will be given in this section. 

The author has used circular and elliptical Hertzian load distribution to describe the effect of 

the indenter. The mechanical parameters of the different compounds are given in Table 2. 

Table 2: A variety of single and 3-layers coatings on a “steel”-substrate 

Name of the 

compound 

Layer 1 

Ea(GPa)/νb/tc(µm) 

Layer 2 

E (GPa)/ν/t(µm) 

Layer 3 

E (GPa)/ν/t(µm) 

Substrate 

E (GPa)/ν 

System 1 450/0.25/1 - - 200/0.3 

System 2 300/0.25/1 - - 200/0.3 

System 3 400/0.25/1 - - 200/0.3 

System 4 500/0.25/1 - - 200/0.3 

System 5 500/0.25/0.3 400/0.23/0.4 200/0.21/0.3 200/0.3 

System 6 250/0.25/0.3 400/0.23/0.4 300/0.21/0.3 200/0.3 

a Young’s modulus 

b Poisson’s ratio: variation of this parameter has no significant effect 

c layer thickness 

 

The corresponding “homogeneous” solutions for the case of circular and elliptical contact 

regions may be found in the papers of Hanson [16, 20]. Unfortunately, the solution for the 

elliptical contact shape is not complete concerning their practical applicability. Hence, partly 



 28

numerical calculations were necessary and only the single layer case under normal load was 

considered. As an example we consider the von Mises stress σM for system 1 under elliptical 

Hertzian load. Figure 7 shows the stress distribution for a ratio a/b=1.6 with a (along the x 

axis) and b (along the y axis) as the main half axes of the contact ellipse. The average normal 

pressure within the contact zone is 1GPa. Repeating the calculation for various ratios a/b in 

the vicinity of the circular case a=b one finds that the maximum value as well as the principal 

distribution of the von Mises stress varies only marginally under a moderate variation of the 

shape of the contact region.  
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Figure 7:  v. Mises stress of an elliptical Hertzian load with half axes a=1.6µm and b=1µm within the x-

z-plane (z≥0 decribes the coated elastic half space) 

 

In contrast to the elliptical contact, no time consuming numerical integration procedures are 

necessary if one investigates circular Hertzian load. The loads P, applied to the surfaces (z=0) 

of our hypothetical compounds, shall be of the technically “worst case” kind, with a very high 

portion of shear loading in x direction (friction coefficient µ=1), an average normal stress 

within the contact zone of 1GPa and contact radius, a, in the range of the total film thickness, 

h: 
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Figure 8:  Comparison between the maximum

along the z-axis (solid line) for system

shear load. 
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Figure 9:  Maximum values of the v. Mises stress

and 4 (dashed line) 
coating thickness: h=1µm 

contact radius:  a=1.1µm
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 values of the v. Mises stress (points) and those ones 

 3. The deviation is caused by the symmetry braking 

 

 

coating thickness: h=1µm
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 at different depths for system 2 (solid line), 3 (points) 
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We first consider the von Mises stress as given above for system 3 and compare the stress 

values along the z-axis and the corresponding maximum values at the same depth but 

different x,y-positions. As one can see clearly from Figure 8, these values differ significantly 

because the shear load breaks the symmetry. Thus, in the following only maximum values of 

the von Mises stress will be compared. In Figure 9 the maximum values of the von Mises 

stress for different single layers are shown. If we assume now to have a critical value of about 

700MPa von Mises stress for the beginning of plastic deformation within the substrate we 

should strictly avoid generating such stress values in the vicinity of the interface region. But 

as we see in Figure 9 in all 3 single layer systems the critical von Mises stress is exceeded at 

the interface. In addition our load conditions cause relatively high tensile stresses at the 

surface (Figure 10) and in the case of the system 4 at the interface (Figure 11) which could 

lead to cracks (“Hertzian cone” and “star cracks”, respectively) and subsequently to film 

delamination. This interface fracture initialisation mechanism in the case of relatively hard 

coatings on pliant substrate materials is know as the “egg-shell-effect”. 
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Figure 10: σxx at the surface (z=0) for system 2 (solid line), 3 (points) and 4 (dashed line) 
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Figure 11:  σxx at the interface within the coating (z=h-10n

(dashed line) 

 

The task is now to design a multilayer coating which

stresses at the interface as well as decreases the ten

Comparison of Figure 9 and Figure 12 shows that 

increased Young’s modulus in contrast to a single

transition indeed reduces the von Mises stress as we

stresses at the interface (dashed lines in Figure 13). H

of system 5 is not decreased (points in Figure 13). 

adding a cover layer of somewhat lower Young’s m

work should investigate this fact in more detail and wi

give the reader at least an idea of the influence of 

distribution the author has in addition calculated the

different values of µ (Figure 14 and Figure 15). 
coating thickness: h=1µm 

contact radius:  a=1.1µm
a 2
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m) for system 2 (solid line), 3 (points) and 4 

 first reduces the maximum von Mises 

sile stresses within the film material. 

a multilayer coating with a gradually 

 layer with its rather abrupt material 

ll as generates sufficiently low tensile 

owever, the tensile stress at the surface 

This tensile stress can be reduced by 

odulus as chosen in system 6. Further 

th higher numbers of layers. Finally, to 

the friction coefficient µ on the stress 

 σxx-stress of system 2 and 4 for two 
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Figure 12:  Maximum values of the v. Mises stress at different depths for system 5 (points) and 6 (solid 

line) 
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coating thickness: h=1µm 

contact radius:  a=1.1µm 

Figure 13:  σxx at surface and interface (z=h-10nm) for system 5 (points, small dashes) and 6 (solid line 

and long dashes) 
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Figure 14: σxx at the surface (z=0) for system 4 and different friction coefficients µ 
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Figure 15: σxx at the surface (z=0) for system 2 
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Figure 16:  Maximum values of the v. Mises stress at different depths for systems 7 (green), 8 (red) and 

9 (black). The thin horizontal „grid-line“ at 400MPa marks the yield strength of the Al-

alloy.  

 

Similar results concerning the structure of an “optimal” coating design were obtained for 

other substrates (e.g. Aluminium and Polymer), but with other parameters (depending on the 

substrate properties and the load conditions of the proposed application). Here we only 

present the results obtained for an Aluminium alloy with the following boundary conditions 

concerning the selectable coating material and contact conditions: 

• Coating: Young’s modulus = 200-500 GPa,  
yield strength 3 GPa,  
thickness = 1µm, 
critical tensile stress: 2GPa 

• Substrate: Al-alloy, Young’s modulus = 70 GPa, yield strength = 400 MPa, 

• load conditions: the coated system must survive a contact pressure of 1 GPa with a 

friction coefficient of µ=1. 

The systems investigated are given in Table 3. 

Table 3: A variety of single, 3- and gradient-layer-coatings an “Al-alloy” 

Name of the 

compound 

Layer 1 

Ea(GPa)/νb/tc(µm) 

Layer 2 

E (GPa)/ν/t(µm) 

Layer 3 

E (GPa)/ν/t(µm) 

Substrate 

E (GPa)/ν 
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System 7 500/0.25/1 - - 70/0.35 

System 8 350/0.25/1 - - 70/0.35 

System 9 200/0.25/1 - - 70/0.35 

System 10 gradient layer with: 500-70 (linear z-dependantd)/0.25-0.35/1 70/0.35 

System 11 200/0.25/0.1 500/0.23/0.6 200/0.21/0.3 70/0.35 

a Young’s modulus 

b Poisson’s ratio: variation of this parameter has no significant effect 

c layer thickness 
d Figure 3 gives the shape of the Young’s modulus and the Haeviside-approximation, but in 

contrary to the figure a number of 101 Heaviside function have been used during the 

evaluation of the v. Mises and the σxx stress 
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Figure 17:  Maximum values of the σxx stress at different depths for the systems 7 (green), 8 (red) and 9 

(black) 
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Figure 18:  Maximum values of the σxx (blue) and the v. Mises stresses (green) at different depths for 

the system 10. 

 

So, in Figure 16, Figure 17 and Figure 18 the Mises stress and the tangential stress σxx are 

shown for the three single layer systems and the gradient layer. We notice that none of the 

systems would survive the “worst contact case” with an contact radius in the range of the 

layer thickness (a=1µm) and a high friction coefficient of µ=1 (average normal pressure: 

1GPa).  
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Figure 19:  Displacement in x-direction (along x-axis) for the systems 7 (black) and 10 (blue) 
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Figure 20:  Maximum values of the v. Mises stress at different depths for system 11. The thin 

horizontal „grid-line“ at 400MPa marks the yield strength of the Al-alloy. 
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Figure 21:  Maximum values of the σxx stress at different depths for system 11. 

For any practical application one could state, that the systems are not well suited for asperity, 

especially small particle, contact. It is especially interesting that even the gradient coating 

with a Young’s modulus function of 

 max
max( ) *SE EE z E z

h
−

= −  

does not provide a good protection. To the contrary on the surface both stresses (Mises and 

σxx) are far beyond their critical limits. This could be considered as some kind of “smoothed 

egg-shell-effect” compelling the “thin” uppermost parts (layers) of the gradient coating with 

the highest Young’s modulus to sustain relatively large deformation, which would not occur if 

these high-Young’s-modulus-parts were thicker. We can prove this easily by calculating the 

displacement in x-direction (see Figure 19) and see in fact, that the surface displacement of 

the 500GPa-part of the gradient layer is dramatically increased compared to the monolithic-

film case. 

In order to find a better coating structure we again built up a three-layer-coating of the shape 

similar to system 6. We stipulate the Young’s modulus-structure as to be: 200GPa-500GPa-

200GPa. Fitting the thickness of all three layers applying our mathematical model provides us 

with system 11. The results for the stresses are given in the Figure 20 and Figure 21. In all 

components the stresses are below their critical values. 
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In summary, under mixed mechanical load conditions with high tangential load components, a 

good protective coating system should have the principal structure proposed in Figure 22. The 

specific parameters determining this shape must be fitted to the known substrate and coating 

material properties and the load problem (application) in question.  

h
depth

Young's modulus

coating substrate

 

Figure 22:  “Optimal” coating structure as proposed from the results of this chapter for pliant 

substrate materials and mixed (normal and shear) load conditions 
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Figure 23: Rectangular array of Hertzian loads on a layered half space 
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3.2. Superposition of Hertzian Loads on Coating-Substrate-Compounds – 

Method to Treat a Variety of Contact Problems 
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Figure 24: Example for a circular array of load dots 

 

In order to investigate more complex contact problems one simply has to superpose the “basic 

solutions” mentioned above at as many different positions as necessary. This method, known 

in the literature as Boundary Element Method (BEM), provides an easy and fast running 

computational tool as long as the used “fundamental solution” is the correct one for the 

elastic space it is applied to. “Fundamental solution” here does not necessarily mean the point 

force solution but the solution for one single load dot (in this section for example we will only 

use Hertzian pressure distributions for the load dots). As long as this solution is complete and 

correct for the elastic body in question the pre-processing is a simple combination of these 
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fundamental solutions in suitable arrays. In general, BEM is not restricted to this simplicity 

(see e.g. [12]). There, because of the lack of correct solutions for the geometries one wants to 

investigate, “ill-adapted” fundamental solutions are applied and this requires cumbersome 

pre-processing and results very often in numerical instabilities and uncertainties. So it should 

be pointed out again, that within this section due to the combination of the method of image 

loads and superposition only correct fundamental solutions are used - even for 

inhomogeneous bodies. This is the principle difference to the general BEM.  
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Figure 25: σzz stress on the surface along the r-co-ordinate for a layered (according to Table 4) and a 

homogeneous material (lower curve of dots) loaded with a circular arrangement of load 

dots. The thin solid line gives the Hertzian stress distribution proportional to 2 2
tota r− . 

Figure 23 shows one simple example. Here a rectangular array, assumed to be the contact 

region, is filled with a lot of small Hertzian loads. The resulting complete potential Φ has to 

be evaluated as a sum of all potential functions of the single loads: 

 ( ), ,i i kl kl k l
loads i loads i

c c x x y
∀ ∀

Φ = Φ = Φ − −∑ ∑ y z . (13) 

This holds because the governing differential equation of linear elasticity is linear and so all 

its solutions are additive. In this section we will only use Hertzian loads. Its potential function 

P necessary to calculate the stresses and displacements are therefore given below (for more 

information see [8, 16] or [C1]): 
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3.2.1. Examples 
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Figure 26: σzz stress on the surface resulting from a tilted rigid flat circular punch acting on a half 

space 

In order to obtain a sufficiently fast evaluation process the basic calculation was done in C++ 

code. All calculations leading to the results presented below were performed using an 

“OmniBook XE3” from Hewlett-Packard with a 850MHz Pentium III Processor and 256MB 

RAM. For each of the investigated contact problems none of the evaluations took longer than 

about 15 to 20 minutes (> 1000 load dots), even for some of the relatively complex layered 

half space cases and inverse calculations. 

3.2.1.1. Paraboloidal indenters – circular contact areas 

If one presses a rigid paraboloidal indenter into the surface of an isotropic elastic half space 

such, that the axis of the indenter is parallel to the surface normal, one should expect to obtain 

a circular contact region. We therefore construct a circular array of load dots as shown in 

Figure 24. Such an array may yield some geometrical artefacts resulting from the differences 

between the influence of dots in the centre’s vicinity and those more outside on the 
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superposed displacement of the whole array. The character of the array should be therefore 

chosen very carefully and checked for agreement in the well known homogeneous half space 

case before it can be applied on more complex materials like layered ones. 

For example we could apply an array of the following shape (c.f. Figure 24): 

1. we place one single circle (n1=1) in the centre, 

2. we surround the centre circle by a proper amount n2 of new equally sized circles such 

that they exactly fill the band around the centre circle, 

3. we surround the band of circles by a proper amount n3 of new equally sized circles 

such that they exactly fill the band around the already placed circles, a.s.o.. 

Calculating the number of circles for each band from: 

 ,k (15) *( 1) 1; 1,2,3,...in const i i= − + =

we have to evaluate the resulting radii ai of the series of circles from: 

 
1

1

1
2
2

start

i

i j
ji

a a

a a a
n

π
π

−

=

=

= +
− ∑

 (16) 

Setting const=6 and astart=0.151321µm Figure 24 gives one example of such an array. 

 

Table 4: Coating substrate system with relatively big Young’s modulus ratio Ef/Es=4 

 Young’s modulus Poisson’s ratio Thickness 

coating 200 GPa 0.25 1µm 

substrate 50 Gpa 0.23 ∞ 

 

Because of the symmetry of revolution the fit process can be simplified dramatically 

compared to the rectangular case (for the detailed description of the process in the case of a 

circular contact area see [50]). Applying now a rigid paraboloidal indenter with the surface 

shape given due to w(r≤atot)~w0-r2 (r2=x2+y2, atot=radius of the over all contact zone) we fit an 

array of k=110 which corresponds to a total number of 36.080 Hertzian load dots. If we set 

astart=0.0094765µm we obtain the total radius of the whole array to atot=2µm. Figure 25 shows 

the result for the σzz stress (stress component normal to the surface) distribution for a 

homogeneous material and a composite with the parameters given in Table 4. Except for a 

few points in the very centre of the contact area the agreement of the fit for the homogeneous 

material with the Hertzian load function 2
0

~zz totz
a rσ

=
2−  (thin solid line in Figure 25) is 
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very good. The fit for the layered material however shows a strong deviation from the 

Hertzian load. 

Because of its importance on thin film measurement using spherical indenters the circular 

contact area case will be discussed in more detail elsewhere [50]. 
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Figure 27: Displacement w normal to the surface resulting from a tilted rigid flat circular punch 

acting on a half space (see text) 

3.2.1.2. Flat circular tilted punch with rounded edges 

We now consider the following contact problem. A homogeneous half space is loaded with a 

rigid flat circular punch such, that the punch is tilted along the x axis. Figure 24 shows the 

geometrical conditions and the array of load dots applied in the BE-Model in order to solve 

the contact problem. Because of the tilting moment the symmetry is broken compared to the 

paraboloidal indenter case and so we have to consider all load dots2. Thus, we use a total 

number of 1045 dots with a Hertzian stress distribution for each of them. The resulting stress 

distribution (Figure 26) shows apart from a strong asymmetry the typical high stresses at the 

                                                 
2 In fact there is one symmetry plane left (the y-axis) and this would allow one to reduce the size of the system of 

equations by a factor ½. 
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contact rim3 except in the vicinity of the “raised” side, where it does not significantly exceed 

the stress in the centre of the contact. The rounded edge effect simply comes from the non 

singular stress distribution of the Hertzian load dots. We can see their individual influence 

particularly clear at the lowered side of the tilted indenter within the presentation of the 

displacement w in direction normal to the undeformed surface as presented in Figure 27.  
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Figure 28: Linear arrangement of Hertzian loads on a layered half space 

3.2.1.3. Contacts along one line 

The next contact problem to be considered shall be an arrangement of load dots along a single 

line as shown in Figure 28. Assuming a parabolic displacement w~w0-x2 along this line and 

setting as additional boundary conditions: 

1. all load dots act with compressive normal stresses towards the surface, 

2. at the contact rim the stress shall vanish, 

we obtain the value of the constant w0 (Figure 29) and the coefficients of our load dots array. 

We apply the method on the compound given in Table 5. The stress distribution along the line 

shows in contrary to the rectangular case - we discuss below - with an aspect ratio ay/ax>1 a 

                                                 
3 A real flat punch would produce a stress singularity at the rim but because we are working with an approach of 

Hertzian loads we rather investigating the problem of a punch with a rounded and not a sharp edge. 
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slightly sharper maximum at the contact centre compared to the Hertzian distribution (Figure 

30). 
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Figure 29: Resulting displacement w for a linear arrangement of Hertzian loads on a layered half 

space 
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Figure 30: σzz stress on the surface along the x-axis for a layered material according to Table 5 loaded 

with a linear arrangement of load dots (dotted line). The thin solid line gives the Hertzian 

stress distribution proportional to 2 2
xa x− . 

Table 5: Coating substrate system with huge Young’s modulus ratio of Ef/Es=16 

 Young’s modulus Poisson’s ratio Thickness 

coating 800 GPa 0.22 1µm 

substrate 50 Gpa 0.25 ∞ 

3.2.1.4. Rectangular Array of Hertzian loads 

As an other application of the new fundamental solutions we superpose several Hertzian loads 

within a square and solve the contact problem for a rigid indenter of the shape given due to 

the equation s=w0-x2 (see Figure 31). The contact shall be without friction. Within the contact 

zone –ax≤x≤ax; –ay≤y≤ay the coefficients ci have to be determined by fitting the displacement 

in z direction w to the shape of the indenter, which yields: 

 
2

0

0
|

x x
x xy y
y y

i
a x a i

a x aa y a loads inside
a y a

i

cw x
z

c loads outside

− ≤ ≤
− ≤ ≤− ≤ ≤ ∀
− ≤ ≤

  ∂Φ  −     ∂    =
   
   ∀ 

∑
  (17) 

The fit has to be performed such that at first all surface stresses should be compressive and 

second that all coefficients making loads outside the contact area should vanish.  
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Figure 31: Shape of the indenter used in the examples with an rectangular contact area 

These conditions provide the value of the so far unknown constant w0. The fitting process can 

be separated into the following steps: 

1. The array of load dots is built with suitable radii as according to the necessity of filling 

the whole contact region sufficiently dense with “contact elements”. The co-ordinates 

of the load dot’s centre are calculated from: 

 
( ), ,

* ; 1, 2,... ; 2 ,
* ; 1,2,... ; 2 .

ij i j

i s x x s

j s y y

k x y

s

x a a i x i n x a
y a a j y j n y a

=

= − + ∆ = ∆ =
= − + ∆ = ∆ =

 (18) 

2. We built a linear system of equations by giving w0 a starting point and calculating 

equation (17) at as many points as coefficients ci of load dots laying within the contact 



 50

zone have to be determined (one can use for example the co-ordinates of the load dot’s 

centres). 

3. The resulting system of equations has to be solved with respect to the ci. 

4. The process has to be repeated by successively seeking for a proper w0 in order to 

fulfil the requirements of the above mentioned contact boundary conditions. 
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Figure 32: Surface displacement resulting from an indenter of the shape given in the figure above with 

the contact area ax=ay=2µm  

 

In the case of a homogeneous material (half space) the potentials Φi can be given due to 

equation (14). Here however we again want to apply the method on a simple layered material 

with the parameters given in Table 5. 
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The fit performed according to equation (17) yields all loads’ coefficients and thus gives us an 

approximation of the whole elastic field which is as correct as good the resolution of our loads 

array has been. Choosing now a concrete example, namely ax=ay=2µm Figure 32 gives the 

surface displacement in the vicinity of the contact area. The absolute height of the 

displacement w may be considered as arbitrary because it can be changed easily by applying a 

constant factor to all ci which coincides with changing the total force resulting from all load 

dots. 
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Figure 33: σzz stress on the surface within the contact area for a layered material according to Table 5 

loaded with a rectangular array of load dots 

Figure 33 shows the surface stress distribution of an rectangular array with the aspect ratio 

2*ax=ay=4µm (Figure 23) below the indenter. The array has a resolution of 29 x 59 load dots 

in x and y direction, respectively  (1711 dots in total). The stress is shown normalised to the 
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stress in the centre σ0 at x=y=0. At the sharp edges of the indenter (y=-4µm and y=4µm) the 

fit provides “singular” stresses similar to those known from the flat punch [8]. But according 

to the discussion of the flat tilted punch above we here do not have sharp edges. In fact 

because of the usage of singular Hertzian loads our edges could be considered as rounded and 

slightly perforated like the rim of a stamp. In order to obtain sharper edges one simply has to 

increase the amount of Hertzian load dots at the contact’s rim. The stress distribution along 

the y-axis in the layered case (Figure 34) shows a distinct deviation from the Hertzian load 

distribution we have obtained for the homogeneous case (Figure 35). In tendency this 

deviation agrees with the results known from Gupta and Walowit who have investigated two 

dimensional contact problems for layered materials [3]. However, their results for the stress 

distribution were a bit more “peculiar” (as they called the deviation from the Hertzian shape) 

then ours, but of course we can not expect to obtain a complete quantitative agreement 

because we are neither considering infinite line contacts nor can we arbitrarily increase the 

aspect ratio ay/ax and thereby maintaining a sufficiently high density of load dots. 
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Figure 34: σzz stress on the surface along the x-axis for a layered material according to Table 5 loaded 

with a rectangular array of load dots (dotted line). The thin solid line gives the Hertzian 

stress distribution proportional to 2 2
xa x− . 
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Figure 35: σzz stress on the surface along the x-axis for a homogeneous material loaded with a 

rectangular array of load dots (dotted line). The thin solid line gives the Hertzian stress 

distribution proportional to 2 2
xa x− . 

3.3. A Method of determining intrinsic stresses in layered materials via 

nanoindentation – the question of in principle feasibility 

The problem of measuring intrinsic stresses in monolithic materials using nano-indentation 

techniques has been proved experimentally possible by Swadener, Taljat and Pharr ([44] and 

45]). Here we discuss the possible application of this method on the measurement of intrinsic 

thin-film-stresses. 

3.3.1. Pure normal loading with spherical indenters 

3.3.1.1. Taking the substrate as indicator 

We propose the following 5-step procedure: 

1. The mechanical parameters of the – uncoated - substrate including the critical v. Mises 

stress for the beginning plastic flow are determined using for example spherical tip 

nanoindentation (see e.g. [23]), 

2. After deposition of the coating: Determination of the elastic properties of the coating 

(Young’s modulus) using again spherical tip nanoindentation (instrinsic stresses do not 

influence this value) and its thickness, 
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3. Chosing an indenter tip radius big enough to ensure that plastic deformation will first occur 

only within the substrate, 

4. Determination of the beginning of plastic flow in the substrate due to periodic loading and 

unloading as proposed by Swain (see e.g. [23]), 

5. Now we have to add the two elastic fields resulting from the intrinsic stresses I
ijσ  and the 

nanoindenter loading L
ijσ . The von Mises stress can be written in the following from: 

 ( ) ( ) ( ) ( )( )2 2 2 2 2 21 6*
2M x yy zz yy xx zz xy xzσ σ σ σ σ σ τ τ τ= − + − + − + + +

I L
ij ij ij

xσ zy  

with σ σ σ= + . Because according to our approach (12) for the intrinsic stresses we can 

write the intrinsic stress field as ( )* , , *I f I f I
ij rr ij rr ijf x y z fσ σ σ= ≡  with a suitable function 

f(x,y,z) we result in the following equation for the measured critical von Mises stress: 
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From this we can easily obtain a formula for the intrinsic film stress σ : 
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. (19) 

In order to estimate the accuracy necessary to measure f
rrσ  via nano-indentation we again use 

the parameters of Table 1 and assume a very plate-like substrate with a side length of 10mm. 
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Now we apply our approach (12) and use a Fourier series in order to describe constant shear  

loading xz yz constσ σ= =  on the substrate surface. We find, that a relatively high f
rrσ  value of 

–10GPa would produce a maximum von Mises stress of about 0,2GPa directly at the interface 

under the coating. The elastic substrate parameters given in Table 1 are those from silicon. 

From publications concerning spherical indentation of coated Si substrates [25] we know that 

Si suffers plastic deformation at a von Mises stress of 11.3 GPa. This corresponds 

approximately to the hardness of Si [25]. Because we need to chose the  indenter such that the 

maximum of the von Mises stress occurs close to the interface (biggest influence of the 

intrinsic stresses) we could apply a 25µm diamond indenter pressed into the compound with 

about 370mN in the intrinsic-stress-free case and about 345mN in the pre-stressed case to 

reach plastic deformation. The coating which we assume to be TiN with a critical von Mises 

value of about 15GPa will behave completely elastically during the indentation. Exact 

calculation of the combined stress fields and applying equation (19) yields an accuracy of the 

depth measurement of at least 20nm (The difference between both cases is about 25nm). But 

because this does not simply mean the absolute position of the indenter tip but the detection of 

the depth of beginning plastic flow due to periodic loading partial unloading this seems very 

difficult to be achievable. However, perhaps if the substrate material would have a much 

lower critical von Mises stress being in the order of the intrinsic stress it might be possible to 

measure this influence. We therefore repeat the calculation with the following (academic) 

substrate: Al-alloy with 70GPa Young’s modulus and 400MPa critical von Mises stress (c.f. 

Table 3). All other parameters are the same as in the example above. The maximum intrinsic 

stress below the coating would now be approximately 90MPa. Now we would use a 5µm 

diamond indenter and apply a force of about 2mN. The minimum accuracy with which the 

critical depth of beginning plastic flow should be detected would be approximately 4nm (at a 

total penetration depth of 20 to 25 nm). This is again an accuracy which can not be achieved 

using standard nano-indenter equipment not to mention the other error sources like surface 

roughness, non spherical tip-shape, etc.. Thus, it has to be concluded, that normal indentation 

and using the substrate as the “indicator” does not seem to be a suitable method to determine 

intrinsic coating stresses except for a few “academic” examples. 
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Figure 36: von Mises stress for the system given in Table 1 at a load of 72mN with a contact radius of 

1µm and an intrinsic film stress of . 10f
rr GPaσ = −

 

3.3.1.2. Taking the coating as indicator 

However the relatively small effect of the intrinsic film stress on the substrate does not mean 

that its effect would be completely insignificant. On the example of the von Mises stress 

distribution one can see (Figure 36 and Figure 37) that the influence is quite dramatic but 

simply more on the shape of the distribution of the von Mises stress rather than their absolute 

values. The figures show for both cases the situation “around” the yield point (a critical value 

of 15GPa is assumed for the coating) and regarding them it becomes clear, that the plastic 

regions would also take completely different shapes. The value of the total force has been 

chosen such that the three dimensional presentation shows clearly v. Mises stresses above the 

assumed yield point of 15GPa within the coating. This is motivated by the discussion of the 

probable shape of the plastic zone. Absolute values of the moment of beginning plastic flow 

will be considered later. Assuming the substrate material to be silicon with a critical v. Mises 
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stress of about 11.3GPa no plastic flow should occur there in the contact situations considered 

here. 
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Figure 37: von Mises stress for the system given in Table 1 at a load of 54mN with a contact radius of 

1µm ( 0f
rrσ = ) 

 

Despite the fact that we here consider layered materials the difference in the shape agrees 

principally with the results given in [44] and [45] where “the location of first yielding is 

expected to switch from beneath the surface on the axis of symmetry to the contact periphery 

at the surface”. Finite Element calculations have been used in [44] to examine this effect. In 

fact, a strongly increased maximum at the surface can be detected in the intrinsic-stress case 

comparing Figure 36 and Figure 37, but caused by the layered structure we observe a torus-

like maximum also at the interface. This deviation from the non-intrinsic stress state should be 

visible in the load-depth-curves. One can deduce this especially because the normal stress 

distribution below the indenter is of course different for different shapes of plastic zones and 

the propagation of their boundary (c.f. [46]). A piece of circumstantial evidence can be 

obtained from purely elastic considerations. Such a consideration should be valid as long as 
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the elastic strains are large compared to the plastic strains. During nano-indentation the mean 

or average pressure pm (c.f. [45]) is measured indirectly via the total Force F. The latter 

determines in addition the factor of normalization for the elastic field due to the following 

equation: 

 20
0

2 ;
a

zz mz

FF rdr p
a

π σ
π=

= ∫ = , (20) 

where we have assumed a contact region of symmetry of revolution with the radius a. This 

determines also the field of displacements. In order to see the effect of different surface stress 

distributions we chose the following - somewhat extreme - example: In the elastic regime the 

two stress distributions 2
0

~zz z
a rσ

=
2−  and 2 2

0
~zz z

r a rσ
=

2−  would result in a 

displacement at the contact center of 3
4

Fw H
a

π
=  and 15

32
Fw
a

Hπ
= , respectively (H is a 

constant). This shows that one could in fact expect a relatively strong influence on the 

measured displacement if the stress distribution below the indenter changes. Staying 

completely in the elastic regime this could only happen in such peculiar situations where the 

indenter suddenly changes its shape or material anywhere below the indenter starts to 

disappear or being moved. But the latter definitively is the case at the moment of  plastic flow 

initiation. Thus, different shapes of plastic zones (resulting from different intrinsic stresses) 

should effect the load-depth-curves in a measurable manner but analyzing this correctly and 

quantitatively would require an elastic-plastic approach, which is not available yet in a closed 

form model. However, in [45] half empirical combined with FE methods have been applied 

with great success on pre-stressed monolithic Al-alloy specimens. There the effect of the 

changed load-depth-curves has been measured due to comparing the results of the stressed 

specimen with unstressed reference samples. So, one could suggest to use reference samples 

with well defined stress states also in the case of coating-substrate-compounds. But in practice 

this could only mean deposition of thin bendable substrates parallel to the substrates one is 

interested. Apart from the fact that this is simply not possible because not all substrate 

materials are available in a plate like shape this would mean an additional inconvenient step 

of investigation. In order to avoid this we suggest an other experimental approach. 

3.3.2. Mixed normal and tangential loading 

The reader may find a relatively comprehensive consideration of “mixed” loading on layered 

materials in [C3]. 
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Assuming that we posses a lateral force nano-indenter allowing us to measure normal and 

tangential forces and displacements as accurate as the normal loads and displacements alone 

with the standard nano-indenters the author proposes the measurement of intrinsic stresses as 

follows. 
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Figure 38: von Mises stress for the system given in Table 1 at a normal load of 30mN (friction 

coefficient 0.6) with a contact radius of 1µm (black: 0f
rrσ = , red: ) 10f

rrσ = −

 

• At first the critical v. Mises stress is determined using only normal loading. The 

indenter has to be chosen such, that the radius of the contact region is approximately 

equal to the film thickness. From Figure 36 and Figure 37 we see that we would obtain 

plastic flow at 72mN for the intrinsic-stress-case and at only 54mN for the non-

intrinsic-stress case. So, a relatively big difference occurs between the two cases for 

pure normal loading. 

• But if we add a tangential force component (more than 1/2 of the normal force) the 

maximum of the v. Mises stress moves to the surface and we reach the critical value at 

almost the same force for both the stressed and the unstressed case.  

This means determination the critical v. Mises stress due to mixed loading with sufficient high 

portions of tangential loads gives us a yield stress almost independent on the f
rrσ  provided we 

have chosen the correct geometrical contact conditions (contact radius a being in the order of 

the coating thickness). Figure 39 gives proof to this fact for different friction coefficients 
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varied from µ=0.3 to µ=0.6 (strictly speaking, this only holds for the example considered 

here, but especially in the practical interesting case of hard coatings on pliant materials similar 

results would be obtained). Figure 40 on the contrary presents the same calculation for pure 

normal loading, which shows a much bigger dependence on the intrinsic stresses (only 

compressive intrinsic stresses are considered here). 
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Figure 39: The influence of compressive intrinsic stresses on the force F necessary to generate plastic 

deformation for the system given in Table 1 with a contact radius of 1µm and a variety of 

friction coefficients µ: 0.3 (red), 0.4 (green), 0.5 (light blue), 0.6 (dark blue) 

 

Applying now only normal loading one simply has to compare the expected value for the 

unstressed case with the measured one crit
Mσ  and could evaluate f

rrσ  using equation (19), 

which can be dramatically simplified due to the fact that within the coating  and 

all other . 

1I I
xx yyf f= =

0I
ijf =

 
( ) ( )( )22 22 4 3 3

2

L L L crit L L L L L
xx yy zz M xx yy xy xz yz

f
rr

σ σ σ σ σ σ τ τ τ
σ

− − + ± − − + + +
=

2 2

. (21) 

The calculation can be repeated for other examples and one finds that the geometrical 

conditions of a contact radius close to the coating thickness and a relatively big tangential 

force component (friction coefficient: µ¥0.5) are necessary to get the critical values of the v. 

Mises stress sufficiently independent from the f
rrσ - value. But even for smaller µ the method 
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is at least theoretically still applicable because of the principle non linear dependency of the 

two measurements “pure normal” and “mixed” on the value of f
rrσ .  
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Figure 40: The influence of compressive intrinsic stresses on the force F necessary to generate plastic 

deformation for the system given in Table 1 with a contact radius of 1µm under pure 

normal loading 

 

The two measurements provide us with two linear independent results of the two interesting 

parameters f
rrσ  and  and principally gives a system of two equations we can 

solve: 

( 0crit f
M rrσ σ = )

 
( ) )( )22 22 4 3 3

2

m m m crit m m m m m
xx yy zz M xx yy xy xz yz

f
rr

σ σ σ σ σ σ τ τ τ
σ

− − + ± − − + + +
=

2 2

, (22) 

 
( ) ( )( )22 2 2 22 4 3 3

2

pn pn pn crit pn pn pn pn pn
xx yy zz M xx yy xy xz yz

f
rr

σ σ σ σ σ σ τ τ τ
σ

− − + ± − − + + +
= , (23) 

where the m n
ij ij ij

tσ σ σ= +  and the pn
ijσ  are giving the components of the mixed and the pure 

normal loading, respectively at the maximum point of the v. Mises stress, which has exactly 

the value crit
Mσ . The solution is given in the appendix. Thus, theoretically using mixed loading 

with two different portions of the tangential load offers the opportunity to determine the 

critical v. Mises stress of the unstressed state and the residual stress due to two indenter 
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measurements. It only depends on the accuracy of the measurement whether also lower µ 

(small differences of the tangential loadings) provide a sufficient linear independence of the 

two equations. The critical value to measure is the difference of the force at the point of 

beginning plastic flow for a mixed load case and a µ=0-case.  
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Figure 41: Difference between the critical force values necessary to generate plastic deformation for 

the case of pure normal loading and mixed loading with friction coefficients µ: 0.3 (red), 0.4 

(green), 0.5 (light blue), 0.6 (dark blue) 

 

Figure 41 shows this force-difference for our example compound given in Table 1. Now we 

need to estimate the error influence of the important parameter a (contact radius) on the 

measurement. Using our example compound we repeat the calculation of Figure 41 for 

different a, namely a variation of 1 0.1a = ± . In order not to overload the figure, we only 

consider the case µ=0.6. From Figure 42 we see, that a variation of 10% of the contact radius 

does not yield a deviation of the finally calculated f
rrσ  bigger than 10%-20% only in those 

cases where the intrinsic stress is very high ( 8GPa

f
rr ≈ −

f
rrσ >

1σ

). To reach the same resulting error 

for much smaller amounts of intrinsic stresses , the contact radius must be 

determined with an accuracy of almost 1% (!). 

GPa
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Figure 42: Influence of the contact radius a on the difference of the critical force (see Figure 41) for a 

friction coefficient µ=0.6. Three different a are considered: a=0.9µm (red), a=1µm (blue), 

a=1.1µm (green) 
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Figure 43: Dependency of the contact radius a on the measured displacement w of the compound at 

the contact center for a force of F=30mN. 
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On the other side the contact radius is determined by a transcendental equation (see [C2] 

appendix B) and depends strongly on the displacement w of the compound. Figure 43 presents 

this dependency between w and a, for the “worst case” of smallest critical loads being 

potentially possible in our example. Here we approximately have a linear dependency 

meaning that 1% error in the measurement of w would result in 1% error of a. Taking our 

example the measurement of displacement must reach an accuracy of about 1nm if one wants 

to detect small intrinsic stresses around 1GPa. 

Even though the whole evaluation must be considered as strongly idealized4 the values in 

Figure 41 and Figure 42 allow the statement, that it should be possible to realize the 

experimental method described above for at least relatively high amounts of intrinsic stresses 

of 5f
rr GPaσ >  with a sufficient accuracy of the resulting values for f

rrσ  and crit
Mσ . 

4. Conclusions 

4.1. Linear elastic coating design - Conclusions 

From the results of section 3.1 one may conclude that a gradual transition of the Young’s 

modulus from the substrate values to that one of the hard protective coating may protect the 

resulting compound from plastic deformation and the so called “star cracks” in the substrate 

and interface area. To avoid film cracking due to tensile stresses on the surface, a final top 

layer with a somewhat lower Young’s modulus should be added. However, it was shown that 

there exists neither an “optimal” coating structure which would fit all substrates and load 

conditions nor a simple “universal formula” to obtain it. Such an “optimal” coating structure 

can only be given for a specific substrate material and a distinct set of load ranges. 

This means that during the search for the best possible coating design, the application has to 

be analysed first in order to find the typical and critical load conditions for which the coating 

substrate system should be designed. In this analysis part again the approaches presented in 

this work can be applied. So would it be sufficient to know the typical geometrical and 

material properties of the counterparts forming the relevant mechanical contacts and one 

could evaluate the complete elastic fields for any given load as long as no inelastic behaviour 

                                                 
4 In the experimental situation it will be difficult to provide the variety of different spherical indenters with well 

defined radii of curvature necessary to realize the geometrical conditions making the effect of different influence 

of the intrinsic stresses on the critical force for the case of pure normal and mixed loading sufficiently visible. 
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does occur. Admittedly, for quite a lot of practical applications the knowledge of physical 

meaningful parameters like Young’s modulus, anisotropy, surface topography, critical v. 

Mises, tensile and shear stresses or even the overall acting forces is insufficient and thus 

extensive measurements would be necessary first.  

In a second step an “optimal” coating may be calculated utilising a fast calculation multilayer 

model (e.g. circular Hertzian load). This procedure can either be performed “by hand” 

meaning a virtual trial and error modelling is applied which leads the seeker to a successively 

better coating structure or the whole process is embedded into a completely automated multi-

dimensional “sensitivity analysis”. The latter comes in handy in all cases where the numbers 

of fitable parameters is higher than 2 and it is unavoidable for more than 4 different 

parameters or more than 2 failure mechanisms the coating has to be optimised for. For 

example: We only want to avoid plastic deformation within the substrate and take the 

thickness of the single-layer coating as the only adjustable parameter. This optimisation can 

easily be performed “by hand”. But as soon as we are going to have 3 possible layers and 

must take into account also critical tensile and critical shear stresses potentially causing mode 

I and mode II or III fracture we would have at least 6 parameters to fit (Young’s modulus and 

thickness for each of the three layers) and check against 4 potential failure mechanisms from 

which we do not yet know where they could occur. Thus, we would definitively need 

technical assistance in order to solve this multi-parameter optimisation problem.  

Finally, the “optimal” structure should be investigated theoretically under a wider range of 

contact conditions (e.g. elliptical Hertzian load or superposed load dots as described in the 

section 3.2.) to find weak points of the structure before expensive experimental testing should 

be started. 

Meanwhile, first results have been published [41-43] presenting an application of the 

modelling method on the concrete example of BCN-coating-systems. 

4.2. Superposition of Hertzian loads - Conclusions 

Superposition of potential fields for load problems with completely known solutions for the 

homogeneous and the layered half space have been shown to be a tool of great variety in order 

to model contact problems in an approximated manner. In section 3.2 linear, rectangular and 

circular contact regions have been investigated. In comparison with finite element methods 

where the whole body has to be built up of elements only the contact area has to be separated 

into an array of sufficiently dense load dots. This does not only simplify the process of 

constructing the model (pre-processing) but shortens in addition the evaluation time – 

especially in cases of layered materials. In addition the method allows inverse solutions for 
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any of the involved parameters. Except for the determination of the load distribution for a 

given normal displacement this has not been specifically treated in this paper. But the 

existence of this possibility is evident from the structure of the final solution of any load 

problem, because this consists only of completely analytical terms containing elementary 

functions. This structure however principally allows the application of simple optimisation 

procedures in order to find a solution for any parameter in question.  

In this work we have only treated non-overlapping load regions, which automatically yields 

distinct areas completely free of load even within the assumed overall or global contact 

region. As a figurative understanding one could assume to have especially rough indenters 

forming this kind of multi contact but it should be pointed out here that, from the theoretical 

point of view, in general the method is of course not restricted to that kind of arrangements of 

load dots. So, applying overlapping arrays of Hertzian load dots one could easily come to 

completely filled global contact areas. 

Concerning the problem of theoretically sharp contact edges or tips one even has the 

opportunity to mix different fundamental solutions. So could for example a clever 

arrangement of Hertzian and Cone dots simulate the effect of mathematically sharp Vickers, 

Berkowich or Knoop indenters. 

Because of its flexibility and its ability concerning the built up of fast running calculation 

procedures the method could be valuable for the analysis of experimental data of indentation 

experiments for arbitrarily shaped indenters and – with some restrictions – even for rough 

sample surfaces. 

4.3. Measurement of intrinsic stresses - Conclusions 

As the considerations of section 3.3.2. have shown in principle it should be possible to 

measure the intrinsic film-stress using nano-indentation with “pure normal” and mixed 

loading. However, the demands for accuracy for intrinsic stresses below 5GPa are relatively 

high. In addition the method requires a great variety of well-defined spherical indenters and of 

course normal and tangential measurement of force and displacement. Such a highly 

sophisticated device is not available yet but if it will be, the method proposed here could be a 

practically very important application. 

4.4. Outlook 

Concerning industrial demands, the value of this research can only be as high as useful it is 

for practical applications. Thus, the author sees its first task in making the approaches 
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presented in this work available as easy to use and understandable tools. This can be achieved 

in two ways of which the author plans to follow both within the next two years.  

At first the methods presented should be applied on practical cases and this way being 

explained and their potential being demonstrated. This mainly means paperwork where the 

following concrete projects are planned respectively have been already realized: 

1. Experimental proof to the gradient coating approach by comparing the experimental 

and the theoretically evaluated load depth curve of a BCN gradient coating, 

2. Contributions to the problem of arbitrarily curved interfaces, 

3. Experimental proof to the problem of arbitrarily curved interfaces by comparing the 

experimental and the theoretically evaluated load depth curve of suitable simple 

examples like an inclined interface, 

4. Investigation of a variety of complex contact problems with e.g. funny indenter shapes 

or complicated friction conditions using the BEM, 

5. Investigation of contact problems on rough surfaces using the BEM. 

 

Secondly, all mathematical procedures, models and tools will be made available as additional 

software packages (modules) of the program ELASTICA or derivatives of it. The following 

work program for the software built up (ELASTICA extensions) has been scheduled so far 

(MP means: programmed, but so far only available as Mathematica package): 

 

ELASTICA-Module Chapter/Reference 

Load dot module (BEM) 3.2. 

Intrinsic stress module 2.2. 

Gradient coatings module 2.1.1.2. 

Stone approach module for very thin coatings [4] and MP 

Module for impact calculation on layered materials MP 

Module for a general normal displacement in parts as MP 

Automated optimisation module in parts as MP 

 

In addition to this the author wishes to extend some of his approaches in contact mechanics to 

the case of the quarter and the eight space in order to investigate contact problems in the 

vicinity of edges and corners. 
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Appendix of part I 
The following two formulae give the solution for the system of equations (22) and (23): 
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