

Surface Topography Corrected Analysis of Scratch Tests on Thin Films

Marcus Fuchs, Nick Bierwisch, Norbert Schwarzer

Motivation

- goal: knowledge-based surface optimization
- saves a lot of time and money for application-oriented design/optimization of arbitrarily structured surfaces
- ✓ abolishes trial-and-error testing
- ✓ sharply reduces necessary prototyping
- ✓ abolishes numerical modeling (FEM, BEM, MDS, etc.)
- \rightarrow SIO OptiCycle [1, 5, 6]
- requires physical analysis to determine physical material parameters
- accurate analysis of experiments (also scratch tests) is necessary
- → surface topography must be taken into account

Design of Scratch Test

- different physical material parameters (tensile strength, shear strength, physical adhesion, tear strength) can be determined be by scratch testing
- require different failure mechanisms to be triggered
- scratch test needs to be designed properly
- → softwares Test Optimizer [2] or FilmDoctor [3]

Test Optimizer

Fig. 1: This figure shows differently designed scratch tests in order to investigate different constituents of the surface: the substrate (a) with a normal load of 60 N and a sphere of 200 μ m radius, the interface between first and second layer (b) with 2.5 N and 50 μ m radius, and the top layer (c) with 0.5 N and 20 μ m.

Physical Analysis of Scratch Test Using a 2D Pre-Scan

calculation of contact field evolving during scratch by SSA

In order to analyze a scratch test physically taking the surface topography into account, a tool is necessary which offers not only importing the 2D/3D topography, but also solving the

Evolution of von Mises stress during scratch test as one component of the contact field calculated by SSA [4].

Physical Analysis of Scratch Test Using a 3D Topography from AFM or WLI

contact problem completely and calculating all relevant components of the contact field.

import a real topography (e.g. from AFM or WLI)

calculation of contact field evolving during scratch by SSA

Von mises stress (GPa)

Von mises stress (GPa)

Y (μm)

-0,50

0,50

0,00

only lateral and tilting load in x-direction taking 2D pre-scan

lateral and tilting load in x- and ydirection taking 3D topography

Conclusions

- ✓ proper physical analysis of scratch tests
- ✓ indentification of physical material properties
- ✓ appropriate design of scratch tests
- ✓ reproducing and understanding real-life failure mechanisms
- ✓ gives hints for improvement of coating structure

References

- 11 SIO OptiCycle, www.siomec.de/OptiCycle.
- [2] Software Test Optimizer, www.siomec.de/TestOptimizer.
- [3] Software FilmDoctor, www.siomec.de/FilmDoctor.
- [4] Software SSA, www.siomec.de/SSA.
- [5] Schwarzer et al., Surface & Coatings Technology 206 (2011) 6.
- [6] Schwarzer, Coatings 4 (2014) 2.