

Dr. rer. nat. habil. Norbert Schwarzer Sächsisches Institut für Oberflächenmechanik SIO Tankow 1 18569 Ummanz auf Rügen Germany E-Mail: <u>n.schwarzer@siomec.de</u> Internet: <u>www.siomec.de</u>

Modeling Tribology Using FilmDoctor®

Full story at www.siomec.de/pub.

1. Material definition and intrinsic stress simulation

				le 📕			A			Film
material	load	calculate	Calculation	Line graph 2D graph	3D graph	Animation	Comparison	Value browser		Doctor
step 1 s	elect your mat	erial					Tuse	internal defects	s set inter	nal defects
select all	Poisson's ratio	Young's r		elect from database		layer thick			c stresses	radient
🗹 layer 1:	V: 0,25	E: 590	GPa	Tin (E:590)	~	h: 0,5	µm in x:	0 GPa	in y: 0	GPa >>
🔽 layer 2:	v: 0.22	E: 450	GPa	Titanium Nitride (TiN) (E:450)	*	h: 0,5	μm in x:	0 GPa	in y: 0	GPa >
			GPa				in x:	[20]	in y: 0	GPa >

Fig. 1: Defining your material structure. Simulating intrinsic stresses correctly by the means of analytical interface defects.

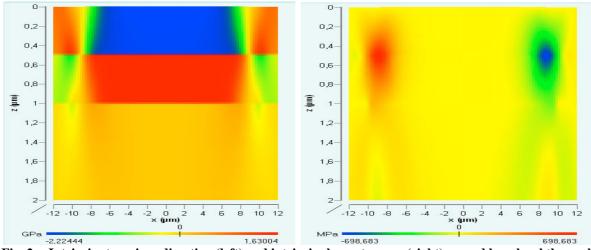


Fig. 2: Intrinsic stress in x-direction (left) and intrinsic shear stress xz (right) caused by a local thermal expansion mismatch between first coating and substrate.

2. Modeling a tribological load-situation

Next step is to find the loading conditions simulating the later application and / or surface test method. Here we assume a tribological contact with asperities decreasing the fluid film between the contact pairing. The typical well know EHD-stress distribution can be constructed by the means of our load dot method (Fig. 3, red ellipse). For more sophisticated investigations also direct contact pairings and / or roughness geometries can be solved (Fig. 3, green rectangle) and then summed up using the load dot method again.

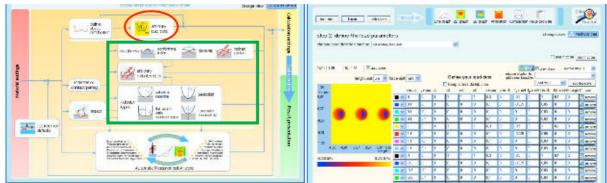


Fig. 3: Choosing a load method (left). Here (red ellipse) the load dot method is used. By clicking on this symbol the program jumps directly to the load dot page (right). Here a load dot ensemble for the simulation of an asperity tribo-problem with the typical EHD-stress distribution is defined. Lateral and tilting loads are also included.

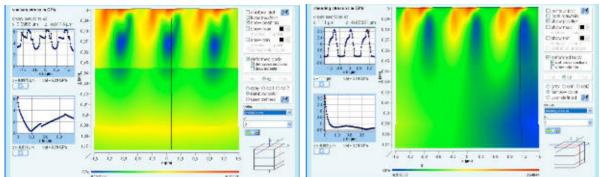


Fig. 4: Left → von Mises stress, giving the likelihood of plastic flow in either coating-system or substrate or both.

Right → Shear stress, e.g. giving information on coating delamination (due to Mode II fracture).

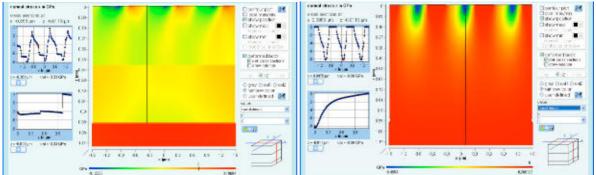


Fig. 5: Left → Normal stress in lateral direction as a result of an external tribo-load (s. below) and two layers with intrinsic compressive stresses. The maxima behind the asperities (red areas on the surface z=0) might cause tensile (Mode I) fracture and lead to initial failure.
Right → Normal stress in direction of the surface normal.

3. A few words about wear-modeling

Why an extended Archard's law, though? → Answer at www.siomec.de/pub

Also much more complex material structures up 100 layers, real gradients plus intrinsic or residual stresses and viscous behavior can be modeled.

