

Dr. rer. nat. habil. Norbert Schwarzer Sächsisches Institut für Oberflächenmechanik SIO Tel. ++49(0)38305743999 Mobil: ++49(0)1733667359 Fax. ++49(0)3423 656666 E-Mail: <u>n.schwarzer@siomec.de</u> Internet: <u>www.siomec.de</u>

Dr. N. Schwarzer SIO, Tankow 1, 18569 Ummanz auf Rügen

<u>From Classical E_r and H to Real Property</u> <u>Profiles with Ordinary Indentation Data</u> <u>- A FilmDoctor[®] Application</u>

Full story at <u>www.siomec.de/pub</u>.

1st Example: 55nm DLC-coating - <u>courtesy Dr. U. Hangen, Hysitron</u>

FilmDoctor v 0.998e28_norber	t's_edition - projec	t: with radial f	riction						
() (-	-	A	-		Cilm 🔿
material load	calculate Cal	culation	Line graph 2D graph	3D graph	Animation (Comparison Value	e browser		Doctor
step 1: select your mat	erial					🗌 use interr	al defects	set intern	al defects
select all	gradient vi	ulus select scous	from database		layer thickn	iess	intrinsic: radient	stresses gra	dient
✓ layer1: v: 0,2	E: 360 G	iPa userde	efined	~	h: 0,055	μm in x: 0	GPa	in y: 0	GPa >
substrate: V: 0,3	E: 221 G	iPa Steel M	12-5-2 (E:221)	~		in x: 0	GPa	in y: 0	GPa 🤛
		e	dit database						ОК

Fig. 1: Defining your material structure. Also possible: Simulating the intrinsic stresses correctly by the means of analytical interface defects. Next step is to load a series of indents with different maximum loads or just a so called CSM-indent data set.

Fig. 2: After the evaluation of the correct coating Young's modulus and Yield strength for each indent, the software fits the Young's modulus profile as function of depth (left) and also the Yield strength as function of depth. Due to the extreme thin coating and the scattering of indent data, only a relatively broad range can be given for the Yield strength of the coating. Subsequent smoothening might help to obtain better results even for such very thin coating structures. The red dots are giving the equivalent – and incorrect – classical "monolithic half space" results.

^{2nd} Example: High-load-indentation experiments on 1.15mm Al-alloy on steel → rim profiling - <u>courtesy Dr. E. Reimann, Zwick</u>

🚼 FilmDoctor v 0.998f5_norbert's	_edition - un	named project	bi di seconda di second				
Project <u>T</u> ools <u>H</u> elp							
material load (calculate	Calculation	Line graph 2D graph	3D graph Anim	ation Comparison Valu	e browser	Film
step 1: select your mate Poisson's ratio	e rial Young's □gradient	modulus s ∏viscous	elect from database	laye	r thickness	nal defects intrinsic sti gradient	set internal defects resses
✓ layer 1: γ: 0,33	E: 62	GPa	Aluminium (Al) (E:62)	💌 h: 11	510 µm in x: 0	GPa ir	iy. 0 GPa 🤛
substrate: V: 0,3	E: 221	GPa	Steel M2-5-2 (E:221)	*	in x: 0	GPa ir	iy: 0 GPa >>
		(edit database				ОК

Fig. 1: Defining your material structure. Also possible: Simulating the intrinsic stresses correctly by the means of analytical interface defects. Next step is to load a series of indents with different maximum loads or just a so called multi-indent data set.

Fig. 2: After the evaluation of the correct coating Young's modulus and Yield strength for each indent, the software fits the Young's modulus profile as function of depth (left) and also the Yield strength as function of depth. Elongation degree of the Al-layer was 0.

Fig. 3: Results as shown in Fig. 2, but this time the Elongation degree of the Al-layer was 5,0.

