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8. Interesting Coincidences 
Now we come back to our choice of a Higgs field in section 4 entitled “A Consequent 
Dynamic Bank Stress Test” with the general structure as given in equation (44) and write it 
down for 3 spatial dimensions: 
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The material part of the Lagrangian LM as given in (41) can be written as: 
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As already hinted in section 4, this field form is motivated by the theory of nonlinear elasticity 
[45], where in the case of uniform extension with coordinate shifts of the form yi=*xi 
(i=1,2,3) the hydrostatic stress σH can be written as (c.f. [45] pp. 79-): 

   2 4
H 11 22 33

1
2

3
               . (50) 

The symbols ,   and P are standing for the so called elastic potentials of the deformable 
space connecting the strain tensor with the stresses produced by those strains [45]. As the 
structure of (50), apart from a constant term P, is exactly the form of the original Higgs or 
Standard model Higgs field, we here investigate the apparent elastic character of the Standard 
Higgs model. Considering – at first - the parameter k   as the “spring constant” of space 

and using the known value of the mass of the Higgs particle with mH=2.25*10-25kg 

(=125GeV/c2 with c being the speed of light), knowing that 
Higgs

H 2

2
m

c


  (with the 

connection to equation (2) via Higgsµ 87 GeV       (as measured by the LHC), 

1 Planck54.135667516 *1
1 h

eV s
2

0
2

   
 

  here denotes the reduced Planck’s constant) we 

obtain a surprisingly simple connection to our elastic parameter k . At first we set: 
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But we also find 
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Where the symbols FPlanck, mPlanck, tPlanck, LPlanck are giving Planck force, mass, time and 
length, respectively. The constant N0 gives the number of Planck length on a meter, which is 
the unit we have used here to define the Planck length.  
Comparing this with the effective “spring constant” ksh of a shallow spherical shell 
(E=Young’s modulus, h=wall thickness, R=radius and ν=Poisson’s ratio of the shell): 
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gives rise to the suspicion that the 3-dimensional space is consisting of spherical shells or 2-
spheres (Planck sized Friedmann universes or just “Friedmanns” as suggested by T. Bodan, 
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c.f. the two books of Bodan entitled “7 Days – Or How to Explain The World to My Dying 
Child” and “The Eighth Day”) of radii R0=LPlanck/(2π). In this case, assuming that light-signal 
transport is moving along the shell surfaces, the speed of light there should be π/2*c, because 
only this gives c equal to Planck length divided by Planck time for an observer within the 
ordinary space. This means: What we consider a straight line in our continuum in reality 
would be a set of half circles along which light signals apparently are traveling – of course, 
this only holds if they are traveling along the shells surfaces. 
When adding up all displacements of many such Friedmann-springs aligned along one meter, 
we would obtain a total displacement of N0 times that one of only one of the “Friedmanns”. 
Thus, similar to a coil spring we result in a combined spring constant of all the “Friedmanns” 
given as follows: 
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which is exactly the result obtained in (52) when comparing with the LHC-measurements for 
the Higgs particle detection (for the coil spring the parameters given are N0=number of coils, 
r=radius of wire, R=medium radius of coils). One explanation for the result of N0 could then 
be the number of such spheres along the unit chosen for the evaluation. Thus, if choosing 
other units for length, N0 should always be given as the number of LPlanck (given in that unit) 
summing up to the length of one length unit used for all parameters within the evaluation 
above, meaning: N0 = 1 length unit /LPlanck (given in that length unit). 
 
Another, somewhat more satisfying explanation is found when considering the spring 
constant of a spherical shell as a whole. With a sphere of sufficiently thin walls its spring 
behavior would be proportional to h/R. In this case the number N0 is just giving the ratio of R 
to h and we have to set h/R = 1/N0 in our equations. Then we could write for the resulting 
spring constant of our “Friedmanns”: 

 Friedmanns Planck Planck
sh

0 Planck Planck

F F h
k

N L L R

   
  


. (55) 

Comparison with the classical spherical shell spring constant given as 
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leads us to (with a yet unknown constant k, E denoting the 2-dimensional Young’s modulus 

and the symbol   giving a constant, which in many cases is to be found as 10   [Landau, 
Lifschitz, “Lehrbuch der Theoretischen Physik”, Vol. VII]): 
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Of course, the same funny result can be obtained, when treating the elastic potentials ,   
and P in the dimension of Young’s modulus as done so in [45] and denoting with S0 the 
surfaces of the little spheres. 



Norbert Schwarzer (The author supports the fight against bad pupil transportation and too early school starting 
times in Germany especially Mecklenburg-Vorpommern. For more see chapter 3 under www.siomec.de/higgs) 

 

 

Planck Planck
Higgs Higgs2

Planck

Planck Planck Planck Planck
2 2

0 Planck 0 0 0 0 0 0

2
2 2 2Planck

Higgs 2 2
Planck 0 Planck

F m

c L

F F F F h
and : k

N L N 4 R N S S R

L c
µ (87GeV)

Meter t N L


    


      

    

 
       

 


. (58) 

It is rather surprising that, taking k near 1, the ratio of one meter to Planck length seems to be 
almost the same as the thickness of the walls of the Friedmann shells to their radius. However, 
we should remind ourselves that the elastic response of a spherical shell is also been 
determined by the internal and external pressure plus the oscillations (thermal and / or 
quantum mechanical) of the shell. Thus, the result might just be an effective ratio of h/R = 

1/N0 as found in the evaluations while in reality also the term Planck

0

F

S
 could be contributing to 

the final and relatively interesting “coincidence” of an effective k*h/R=LPlanck/meter (with 
LPlanck giving in meter) being found when comparing the LHC-measurements with a nonlinear 
elastic space approach. Correct evaluation with R= R0=LPlanck/(2π) and assuming the 2-
dimensional Young’s modulus in (57) to be E= FPlanck/ LPlanck, we obtain from (56): 
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which makes the h, the wall thickness of the spatial spheres, determine the Poisson’s ratio of 
space. Rather interestingly we see that an incompressible space with ν=1/2 would have 
Friedmann spheres with the thinnest wall thickness. 
 
According to [50] this all just means that our 3-dimensional space is simply made out of all 
these little 2-spheres and that therefore everything is taking place on surfaces, because, for us, 
there are only surfaces. But of course, this would be just one possibility to try to explain the 
funny simplicity of (51). 
Another result would be the simple fact that the self-interaction of the Higgs field 
automatically results from the nonlinear elastic character of this space being an ensemble of 
sub-Planck-sized 2-spheres, however, as shown by Bodan, with a slightly fractal character. 
How this also brings about many of the quantum mechanical effects we are observing is also 
elaborated in the book by Bodan (see T. Bodan, English appendix of “The Eighth Day”, 
original in German as “Der Achte Tag” [50]). 
One further interesting finding (coincidence) is the derivation of the spatial stress 
development and thus, the Higgs field, as a simple extremalizing of surfaces of partially 
fractal structure. With this and the concept of the little fractal “Friedmanns” not only the 
universal Higgs mechanism arises from the General Theory of Relativity but also natural, 
special ensembles of harmonic oscillators and the concept of time [50]. 

  


